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Abstract

Recent advances in measurement technologies have resulted in the availabil-
ity of large datasets from a variety of fields spanning the natural and social
sciences. This posed the challenge to develop new statistical tools to extract
relevant information from the data. A paradigmatic model that has been suc-
cessfully applied to analyze large datasets is the Ising model of binary spins
interacting through pairwise connections. In this thesis, we use methods of
statistical physics to tackle several open problems related to modelling the
stochastic dynamics of the Ising model and reconstructing the unknown net-
work of interactions from data. First, we derive a novel mean-field solution
to the discrete time parallel dynamics of the Ising model, based on a weak
coupling expansion of the log-generating function with constrained first and
second order moments over time, the result of which outperforms other mean
field techniques in predicting single site magnetization. Next, for both the
equilibrium and kinetic models, we analyze the inverse problem of learning
the couplings between the variables based on a set of observations on spin
configurations. Using the cavity and replica methods of statistical physics,
we compare the performance of different inference algorithms, by analytical
computation of the estimation error as a function of the size of the dataset,
and study its deviation from asymptotic optimality. We also derive optimal
algorithms for learning the couplings. Finally, we consider the case where
a subset of the spin trajectories is observed while the rest are hidden. This
enabled us to model systems where only a finite fraction of the system is exper-
imentally accessible, but allowed the hidden variables to affect the dynamics
of the observed variables. A central question is the prediction of the hidden
spin state when the couplings are known. For the average case scenario, we
investigate the theoretically optimal performance for predicting hidden spins
by computing the error of the Bayes optimal predictor. We also derive a mean-
field formalism to accurately estimate the single-site magnetisation of hidden
spins for single instances of the network.
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Zusammenfassung

Die verfügbare Datenmenge in Gebieten der Natur- und Sozialwissenschaften
wächst stetig durch den technischen Fortschritt bei Methoden zur Datenerhe-
bung. Dieser Zuwachs ist eine Herausforderung für Algorithmen, die Daten
auf relevanten Informationen reduziert. Ein paradigmatisches Modell, das
mit Erfolg auf groen Datenmengen angewendet wurde, ist das “Ising Mod-
ell” für binäre Spins, welche durch paarweise Wechselbeziehungen voneinan-
der abhängig sind. In dieser Arbeit verwenden wir Methodik der statistis-
chen Physik zur Lösung verschiedener offener Probleme, verbunden mit der
Modellierung stochastischer Dynamik und der Rekonstruktion unbekannter
Netzwerke durch Interaktionen, welche in Daten beobachtet werden. Als er-
stes leiten wir eine neue “Mean-field” Lösung her für die zeitdiskrete par-
allele Dynamik des Ising Modells. Hierzu entwickeln wir die logarithmische
Moment generierende Funktion in den schwachen Kopplungen bedingt auf
ersten und zweiten Momenten an jedem Zeitpunkt. Weiterhin untersuchen
wir das inverse Ising Problem für sowohl das Gleichgewichts- als auch das
kinetische Modell. Das heit, wir analysieren das Lernen der Kopplungen zwis-
chen Variablen gegeben ein Set von Beobachtungen. Durch den Gebrauch
von “Cavity-” und “Replikamethoden” aus der statistischen Physik vergle-
ichen wir verschieden Inferenzalgorithmen durch analytische Berechnung des
Schätzfehlers abhängig von der Menge der verfügbaren Daten und untersuchen
die Abweichungen dieser von der optimalen Asymptotik. Auerdem leiten wir
optimale Algorithmen zum Lernen der Kopplungen her. Am Ende betrachten
wir den Fall, in dem ein Teil der Spintrajektorien bekannt ist, während ein
Teil nicht beobachtet wird. Dies erlaubt uns Systeme zu modellieren, die
uns experimentell nur unvollständig zugänglich sind, unter Berücksichtigung,
dass die unbeobachteten Variablen die beobachteten Dynamiken beeinflussen
können. Von zentraler Bedeutung ist die Vorhersage des Zustands der nicht
beobachteten Spins, wenn die Kopplungen bekannt sind. Für den gemittel-
ten Fall untersuchen wir das theoretisch optimale Ergebnis zur Vorhersage der
nicht beobachteten Spins durch berechnen des Fehlers eines Bayes optimalen
Prädiktors. Wir leiten einen “Mean-field” Formalismus für einzelne Instanzen
von Netzwerken her, um die marginale Magnetisierung der nicht beobachteten
Spins präzise zu schätzen.
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1 Introduction

1.1 Motivation

Due to recent technological advances in data acquisition, the last two decades
have witnessed a rapid increase in the amount and richness of data that can
be collected in many fields of natural sciences, finance, social sciences, and
communication networks. This has shifted the focus from the analysis of sin-
gle system components to the attempt to understand the system as a whole.
Remarkable examples can be found in biology, where the advent of multi-
component recordings opened up entire new lines of research, such as genomics,
transcriptomics, proteomics, metabolomics, and the analysis of simultaneous
measurements of many neurons. As common feature, these large datasets en-
code the activity of large systems of many interacting units, where the direct
connections between them are not directly measurable.

To understand how the system operates, it is crucial to reconstruct such
underlying networks of interactions. The inverse problem of reconstructing
the network starting from the empirical knowledge of certain observables, such
as averages and correlations, has raised a lot of interest within the statistics,
machine-learning, and statistical physics communities. The main challenge
is to disentangle direct connections from mere correlations that could emerge
from indirect influence of intermediate components. The task is even more
difficult since the system is typically not entirely accessible, and the data are
noisy.

Inverse problems generally have no unique solution but can be tackled in
a probabilistic formulation, where the system is modelled by a parametrised
distribution; parameters are then inferred, either maximising the likelihood
of the data or using Bayesian estimators (where further a priori information
on the parameters is incorporated through a prior). However, exact inference
requires the computation of high dimensional integrals and is intractable for
most models of interest; hence, a lot of effort has been made to derive efficient
approximate techniques for this task.

The field of statistical mechanics, whose focus is to study large systems of in-
teracting particles and to unveil the relations between microscopic interactions
and macroscopic observables, provides a whole series of techniques that can be
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1 Introduction

used both to construct inference algorithms based on suitable approximation
schemes and to theoretically assess the algorithms’ performance.

A model of statistical physics widely used for network reconstruction is the
Ising model, describing an equilibrium system of binary variables (spins) inter-
acting via pairwise connections. Despite being an obvious over-simplification
of real-world systems, it can be used very effectively to disentangle direct in-
teractions among the variables from spurious coupling effects. However, the
assumption that the system is at equilibrium -which requires that the connec-
tions are symmetric- is unrealistic for many applications.

More recently, a simple extension to dynamics of the Ising model (here-
after denoted as the kinetic Ising model) has been employed for reconstructing
biological, financial, and gene regulatory networks, where the equilibrium as-
sumption is relaxed. Moreover, in the case of time-series data, the temporal
structure encoded in the dataset can be exploited.

While the equilibrium Ising model has been extensively studied in the last
decades and a wide body of literature has been devoted to develop approximate
algorithms for the inverse Ising problem, the attention to its out-of-equilibrium
dynamics is more recent, and even the problem of relating the system param-
eters to the time evolution of the observables is not yet fully solved.

In this context, the contribution of this thesis is towards both a theoretical
analysis and the construction of new inference algorithms. First, for the kinetic
Ising model, we will study the forward problem of predicting the time evolution
of the single spin magnetization for fixed connections between the spins. We
will focus on densely and weakly connected networks, for which an exact mean-
field theory can be formulated in the thermodynamic limit of a large system.
In contrast to the equilibrium case, the variables of interest are not single
spins but entire spin trajectories, and the goal is to compute the marginal
distribution of single-spin trajectories. The exact mean-field solution has so far
been found only in the case of fully asymmetric interactions [MS11], in which
two-times correlations are negligible. In the case of generic degree of symmetry
of the couplings, a recent approach [MS14] which incorporates the effect of
time correlations has improved on the prediction of single site magnetizations;
still, it was not clear how the exact mean-field solution would look like in the
thermodynamic limit. We will derive a novel approximate technique of the
mean-field type to tackle the problem in the limit of an infinitely large system.

The second focus of the dissertation concerns the theoretical performance
of inference algorithms, which estimate the couplings between the spins based
on a set of observations of spin configurations. Various algorithms based on
approximate schemes have been proposed for the inverse Ising problem, and
more recently for the inverse kinetic Ising problem, with the goal of providing
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1.2 The Ising model and the kinetic Ising model

computationally efficient inference tools for large networks [NZB17a]. While
their performance has been only tested on specific instances of the problem, it
is important to assess their statistical efficiency in a unified theoretical setting.
Both for the kinetic and for the equilibrium case, we analytically compute the
typical performance of various estimators of the couplings and provide new
algorithmic implementations of the most efficient ones.

As a last point, we observe that in most biological networks, often only
a small fraction of the system is experimentally accessible. Variables whose
activity is recorded will also interact with variables not directly observable
or detectable, usually referred to as hidden variables. Hence, recent works
[TH13, DR13, Hua15, BHTR15, RT15, DB16] have introduced a model where
a fraction of the spin trajectories are observed and a fraction are hidden.
Network reconstruction is much harder in this scenario, and no satisfactory
solution has been found in dense networks if the hidden variables are connected
among themselves. Exact learning rules imply the summation over all possible
configuration of hidden spins, which is intractable for large systems; one can
resort to learning rules that are based on an approximate estimation of hidden
nodes at fixed couplings, but the accuracy of inferring the state of the unob-
served variables for given system parameters was not clear. In the last part
of the dissertation, we address this problem by investigating the theoretically
optimal performance for predicting the hidden spins. We will also introduce
a novel technique to predict the single site magnetization of hidden spins for
single instances of the network.

1.2 The Ising model and the kinetic Ising model

After introducing the Ising model and its simplest generalization to dynamics,
we will show how they can be used to model the dependencies of spikes recorded
from ensembles of neurons. Other application domains include determining the
3D structure of proteins [WWS+09], analyzing gene expression data from gene
regulatory networks [LBC+06], inferring the fitness landscape in a evolutionary
biology web of ecological interaction between species [BCG+12]. A recent
review of those and other methods can be found in [NZB17a].

1.2.1 The Ising model

The Ising model was introduced to study the macroscopic properties of mag-
netic materials [Hua87,LL69], many-body systems composed of molecules with
a magnetic moment - a vector which tends to align with the magnetic field act-
ing on the molecule. Magnetic moments of individual molecules are described
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1 Introduction

by binary variables, σi = ±1 (or Ising spins), localized at the vertices of a lat-
tice. To each pair of variables at sites i, j we assign an interaction energy with
value −Jij if the spins σi and σj are pointing in the same direction (σi = σj)
and with value Jij otherwise (σi = −σj). In some cases, each site i also has
its own energy −σihi, due to the presence of a (local) external field hi. The
energy of the many-particle system, or Hamiltonian, is

H = −
∑

i,j∈B
Jijσiσj −

N∑

i=i

hiσi, (1.1)

where N is the total number of spins. The choice of the set of bonds B
depends on the problem one is interested in. We will consider fully connected
networks, where each spin is directly interacting with all the other spins in
the network: i = 1, . . . , N and j = 1, s . . . , i − 1. In the canonical ensemble,
the probability distribution of the variables σ = {σ1 . . . σN} is the Boltzmann-
Gibbs distribution

P (σ) =
e−βH

Z
, (1.2)

where β = 1/T is the inverse temperature and the normalization factor Z,

Z =
∑

σ1=±1

∑

σ2=±1

...
∑

σN=±1

e−βH , (1.3)

is referred to as the partition function. In the following, we will use either the
notation

∑
σ or Trσ to denote the sum over all possible spin configurations.

The distribution (1.2) can be also interpreted from an information theoretic
point of view (see, for instance, [Jay57]). Imagine we want to describe the
probability distribution P (σ) of a set of binary variables σ. To model the
system by making the minimum possible assumptions beyond what we can
directly measure from the system itself, we can use the maximum entropy
principle. Indeed, the Shannon entropy, defined as

S[P ] = −
∑

σ

P (σ) logP (σ), (1.4)

quantifies the uncertainty of the set of random variables σ: the larger the
entropy, the less a priori information one has on the value of the variables.
Hence, making the minimum assumptions on the form of P (σ) corresponds
to finding the distribution that maximizes the Shannon entropy. If something
is known about the statistics of the variables, the maximization has to be
performed under the corresponding constraints. Let us assume that we can
compute sample averages of σi and σiσj in the data; the maximum entropy
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1.2 The Ising model and the kinetic Ising model

distribution subject to these constraints is (1.2), where {hi, Jij} are the La-
grange multipliers that have to be chosen so that the averages {〈σi〉, 〈σiσj〉}
with respect to (1.2) agree with experiments. In other words, the distribution
of the Ising model can be seen as the less biased distribution that reproduces
the observed averages and pairwise correlations between the variables.

While the forward Ising problem consists in predicting system observables
– such as spin magnetizations and correlations – given a complete description
of the system, in the inverse Ising problem we can measure magnetizations
and correlations from a system whose parameters are unknown; the goal is to
infer the parameters (i.e., couplings and local fields) from the data. We will
discuss methods to perform this inference task in Chapters 4 and 5. In the
following section, we provide an overview of how the inverse Ising problem has
been applied to the field of computational neuroscience.

1.2.2 Explaining correlations in neural spike trains

A major challenge in neuroscience is to understand how neurons process infor-
mation through collective interactions. Such understanding has been limited
by the possibility to experimentally access only a tiny fraction of the expo-
nential number of possible activity patterns. Recently, multi-electrode arrays
techniques have allowed to simultaneously record the activity of hundreds of
neurons, and the spatio-temporal resolution with which these recordings can
be done is rapidly increasing. Although networks remain dramatically under-
sampled, there is now the possibility to address questions that were previously
out of reach.

One central open question is the origin of the multi-neuron firing patterns
observed in experiments [SBIB06], which seemed to be in contrast with the
weak measured correlations between pairs of neurons. Recent works [SBIB06,
CLM09,SFG+06] have used maximum entropy principles to explain how weak
correlations among elements can have a strong effect on the state of the pop-
ulation as a whole.

For example, the authors of [SBIB06] analyze simultaneous recordings from
40 neurons in the salamander retina. Time is divided in ∆τ = 20ms time
steps, and the activity of each cell in a given time step is represented by a
spin, with value σi = 1 if the neuron is spiking, σi = 0 if it is silent. The
considered data is the set of observed simultaneous (i.e. within a single time
bin) spike patterns, without regard to their temporal order. The authors use
the Ising model as the minimal model that incorporates pairwise correlations
and show that it can accurately predict the combinatorial patterns of spiking
and silence in retinal ganglion cells; in contrast, models of independent neurons
drastically fail. The comparison of theory and experiment is done for groups

5



1 Introduction

of N = 10 neurons, which are small enough that the full distribution P (σ) of
a spin configuration can be sampled experimentally. The external fields and
pairwise symmetric couplings are inferred by maximizing the likelihood of the
data. Here, the couplings describe the interactions between neurons within
the terms of the fitted model and are referred to as effective or functional
connections. Hence, inferring the values of the couplings starting from the data
allows to reconstruct the network of causal interactions between the neurons.

This minimal model has been generalized in different ways, for example by
adding a stimulus-dependent field acting on the spins [GATSS13], or including
higher order interactions [GSS11].

However, an evident limitation is that it does not address the temporal evo-
lution of correlated states. Interestingly, the authors of [TJH+08] point out
that, if correlated states occurred in a temporally independent manner, con-
catenating the states sampled from the Ising model should give a reasonable
estimate of the lengths of observed multi-neuron firing patterns. However, they
observed that sequences of correlated states were significantly longer than pre-
dicted by concatenating states from the model. This suggested that temporal
dependencies are a common feature of cortical network activity, and should be
considered in the models.

Moreover, it was shown [TRMH13] that correlations in the statistics of neu-
ral spike trains could arise both as the effect of interaction between neurons
or by sharing a common non-stationary input, where no interaction among
neurons is present (see also [TMM+14]).

Hence, a deeper insight could be achieved through dynamical models. Time-
varying inputs and two-times correlations can be taken into account by a simple
generalization to dynamics of the Ising model, i.e. the kinetic Ising model with
Glauber update rule.

1.2.3 Glauber dynamics

Let us consider a set of Ising spins interacting trough couplings Jij and with
a (time-dependent) external field. They also interact with an external agency
(e.g., a heat reservoir) which causes them to change their states randomly
with time. The noise introduced by such external agency is parametrized
by the inverse temperature β. Each spin σi(t) is a stochastic function of
time and makes random transitions between the values ±1, according to the
value of the neighboring spins. In particular, the local transition probability
wi[σi(t+ ∆t)|{σj∈∂i(t)}] that a site i at time t+ ∆t has spin σi(t+ ∆t), given

6



1.2 The Ising model and the kinetic Ising model

the value of its neighbors spins σj∈∂i(t) at time t, is [Gla63]:

wi[σi(t+ ∆t)|{σj∈∂i(t)}] =
eβσi(t+∆t)θi(t)

2 cosh βθi(t)
,

θi(t) =
∑

j∈∂i
Jijσ(t)j + hi(t).

(1.5)

Note that - contrary to the equilibrium case - we are not introducing any energy
function; now the network of couplings is directed, and in general Jij 6= Jji.
Self-interactions Jii might be present or not: in the following sections of the
thesis, we will focus on cases where such interactions are absent. The param-
eter β quantifies the randomness of the dynamics: for β → 0 the dynamics
is completely random, for β → ∞ it is deterministic. Various update rules
can be defined for this dynamics. One choice is to updated simultaneously all
the spins at discrete time steps. Such parallel (or sinchronous) dynamics is
defined by the Markov chain

P (σ(t+ 1)) =
∑

σt

W [σ(t+ 1);σ(t)]P (σ(t)), (1.6)

with transition probability

W [σ(t+ 1);σ(t)] =
∏

i

wi[σi(t+ 1)|{σj∈∂i(t)}]. (1.7)

In case of symmetric interactions Jij = Jji and stationary external fields
hi(t) = hi, the dynamics obeys detailed balance and the equilibrium distri-
bution can be written in the Boltzmann form Peq(σ) ∼ eβH(σ), where the H
is the Peretto pseudo-Hamiltonian [Per84] (i.e., an Hamiltonian dependent on
the inverse-temperature):

H(σ) = −
∑

i

hiσi −
1

β

∑

i

log 2 cosh[βθi(σ)]. (1.8)

A different dynamics is defined by the sequential (asynchronous) update
rule, where at each time step only one randomly chosen spin is updated; the
duration of each update is 1/N , so that - on average - all spins have been
updated once on a time scale O(N0). A sequential dynamics with discrete time
can be defined by the Markov chain (1.6) with transition probability [Coo01]

W [σ(t+ 1);σ(t)] =
1

N

∑

i

[∏

j 6=i
δσj(t+1), σj(t)

]
wi[σi(t+ 1)|{σj∈∂i(t)}]. (1.9)
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1 Introduction

In the continuous limit N →∞, the process obeys the master equation

d

dt
P (σ(t)) =

∑

i

[P (Fiσ(t))wi(Fiσ(t))− P (σ(t))wi(σ(t))] , (1.10)

where now

wi(σ(t)) =
1

2
[1− σi tanh βθi(t)] , (1.11)

and where Fi is the flip operator: Fiσ = {σ1, . . . ,−σi, . . . , σN}. In case of
symmetric interactions and stationary external fields, the dynamics converges
to the equilibrium distribution Peq(σ) ∼ eβH(σ), where H is the Hamiltonian
of the Ising model (1.1).

1.2.4 Inferring effective connectivities in neuronal networks

The Glauber parallel dynamics for an Ising system has been used to model
networks of neurons that spike at a time-varying rate which depends on earlier
spikes and on external covariates (such as a stimuli).

Spike trains recorded from N neurons are divided into small time bins, and a
binary variable σi(t) is assigned to each neuron i at each time bin t, with value
1 if the neuron has emitted one or more spikes in the time bin, −1 otherwise.

Two recent studies [RH11b, CFG+15] simulated biologically realistic corti-
cal models and showed that functional connections inferred using the kinetic
Ising model can be successfully used for network reconstruction, i.e. to dis-
tinguish connected vs disconnected pairs of neurons. In addition, the authors
of [CFG+15] propose a method to overcome the limitations of a probabilistic
dynamics with a single arbitrary time-step and to correct for the bias in-
troduced by the arbitrary choice of the time-bin used to binarize the spike
trains. A dynamic model - contrary to an equilibrium one - allows us to infer
non-symmetric interactions, and real synaptic interaction are in general not
symmetric. Yet, the exact relation between the inferred functional connec-
tions and the real synaptic connections is non-trivial and could be understood
only analysing recordings from circuits where the actual physiological synapses
between neurons are known 1.

However, some features of the inferred connections can be robust to changes
in the model and give precious insights on the properties of the real system.

1So far, only few works [GKG+13, VIS15, LCRP14] have validated connectivity estimates
with some form of ’ground truth’; they showed that approaches based on Generalized
Linear Models (GLMs) were successful in inferring the true connectivity of the circuit,
while linear models and model-free approaches failed; this encourages for the choice of
GLM-based approaches to estimate synaptic connectivity (note that the kinetic Ising
model can be seen as a simplified GLM with a limited temporal memory).
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1.2 The Ising model and the kinetic Ising model

A relevant example is the work by Dunn and collaborators [DMR15]. They
analyse simultaneous recordings from tens of grid cells in two rats freely moving
in a 2D environment. Grid cells are neurons that present a particular spatial
selectivity, such that the positions in real space where one particular cell is
firing form an hexagonal grid; the relative position of the grids of two distinct
cells is called their relative phase. Fitting a kinetic Ising model with parallel
update rule to the data, the authors find a systematic dependence of the
couplings between two cells and their relative phase: cells with nearby phases
have positive functional connection strengths, while those further apart have
negative ones. The authors explain away various sources of correlations that
could lead to spurious connections, such as the overlap of the firing fields, and
head directional input. The result is relevant as, since attractor models of
grid cells rely heavily on this type of effective connectivity, this work provides
support for the idea of attractor dynamics in the grid cell assembly.
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2 Thesis Outline

This dissertation is written in the form of a thesis by publication, where I col-
lect the papers that I have co-authored in separate chapters. In each chapter,
the paper is followed by unpublished results and by an appendix that briefly
reviews the fundamental methods used in the paper.
Chapter 2 considers the forward problem of predicting the time evolu-

tion of system observables in the kinetic Ising model, assuming that the pa-
rameters are known. With the aim of analysing the system in a mean-field
framework, we will introduce a novel technique referred to as the extended
Plefka expansion. It is an extension to dynamics of the Plefka expansion for
the Sherrington–Kirkpatrick model, where the novelty lies in constraining not
only the first moments in the expansion, but also all marginal second moments.
We conjecture that it provides the exact mean field solution to the forward
problem in the thermodynamic limit of infinitely many particles, when the
couplings are weak and long-ranged.

Publication included at page 17 (Publisher version): Bachschmid-Romano,
Ludovica, et al. Variational perturbation and extended Plefka approaches to
dynamics on random networks: the case of the kinetic Ising model. Journal of
Physics A: Mathematical and Theoretical 49.43 (2016): 434003.

doi:10.1088/1751-8113/49/43/434003
In Chapter 3, we analytically study the performance of two algorithms

for learning the couplings in the kinetic Ising model, focussing on the case of
asymmetric couplings. The first one is based on the exact mean-field solution
for the asymmetric model derived in [MS11]; the second is a Bayesian estimator
of the couplings, where we approximate the posterior means - whose exact
computation is intractable- using the cavity method of statistical physics. We
compute the estimation error of these methods, as a function of the length of
observed trajectories. The theoretical setting for our analysis is offered by the
statistical mechanics of inverse problems, where the phase space consists of the
couplings to be inferred, while the spin values are treated as fixed observations;
the replica method of spin glasses is used to compute the average error of a
given estimator of the couplings in the limit of large systems, where the ratio
α = M/N remains finite - M being the size of the dataset and N the size of the
system. The main challenge will be to treat analytically the distribution of the
spin observations, but the analysis will be simplified by the fact that two-times

11



2 Thesis Outline

correlations decay after one time step for asymmetric networks. However, the
equal-time correlation matrix will play a major role in determining the speed
of learning and we will compute its statistics in order to get an explicit result
for the estimation error. We also design an efficient algorithm to numerically
implement the optimal Bayes estimator.

Publication included at page 68 (Publisher version): Bachschmid-Romano,
Ludovica, and Manfred Opper. Learning of couplings for random asymmet-
ric kinetic Ising models revisited: random correlation matrices and learning
curves. Journal of Statistical Mechanics: Theory and Experiment 2015.9
(2015): P09016.

doi:10.1088/1742-5468/2015/09/P09016

The formalism of Chapter 3 is then extended in Chapter 4 to analyse the
error of learning the couplings in an equilibrium model. The distribution of
the data is even more difficult to treat, due to the presence of the normalising
partition function, and we will use a combination of the cavity and replica
methods of spin glasses to carry out the calculation and include the effect
of correlations. We study the performance of algorithms based on the min-
imisation of a local cost function, focussing on the pseudo-likelihood and the
mean-field estimators. Surprisingly, we will find that a simple quadratic cost
function is the one that achieves minimal error, and the explicit estimator
associated with it can be entirely constructed from data.

Publication included at page 120 (Publisher version): Bachschmid-Romano,
Ludovica, and Manfred Opper. A statistical physics approach to learning
curves for the inverse Ising problem. Journal of Statistical Mechanics: Theory
and Experiment 2017.6 (2017): 063406.

doi:10.1088/1742-5468/aa727d

Chapter 5 treats an extension of the kinetic Ising model, where a fraction of
the trajectories is observed and a fraction is hidden. Using the replica method,
we analytically compute the average error of the Bayes optimal estimator of
hidden spins, which is obtained from the posterior distribution of unobserved
spins given the observed ones. We then turn to the study of single instances
of the network. Using the extended Plefka expansion, we derive a set of mean-
field equations characterising the dynamics of the hidden-spin variables, and
we can accurately estimate the single-site magnetisation of hidden spins. In
the end, we discuss the applicability of our result as building block for an
algorithm aimed at reconstructing the network connections.

Publication included at page 158 (Publisher version): Bachschmid-Romano,
Ludovica, and Manfred Opper.Inferring hidden states in a random kinetic
Ising model: replica analysis. Journal of Statistical Mechanics: Theory and
Experiment 2014.6 (2014): P06013.
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doi:10.1088/1742-5468/2014/06/P06013
In the sixth and last chapter, we summarise the conclusions of the single

chapters and indicate future research directions.
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3 Mean field approaches to
dynamics on random networks:
the kinetic Ising model

3.1 Introduction

Mean-field methods of statistical physics allow for a tractable description of
complex systems of many interacting variables. Based on the assumption that
the fluctuations around the average value of the order parameters are small,
they provide a solution in which each variable is subject to an effective local
field, considering the interactions with other degrees of freedom, on average.
Many highly non-trivial mean-field approximations were used to derive the
main equilibrium properties of the Ising spin glass model [MPV87]1, and made
it possible to introduce efficient algorithms for statistical inference and opti-
misation [MM09]. In recent years, a growing interest has been dedicated to
extending such mean-field techniques to the dynamic counterpart of the Ising
model.

Various kinds of dynamics can be defined for the Ising model. We are
interested in studying the Glauber dynamics with parallel update rule, for
systems where the matrix of couplings is fixed and can have any degree of
symmetry, bearing in mind the applicability of this framework to model the
dynamics in biological networks, based on time-series data.

However, initial mean field approaches to the dynamics of spin systems were
developed for the disorder averaged case scenario. Soft spin models were the
first to be considered. If the connections between the spins are symmetric,
the dynamics of the network can be described as a relaxation of a global en-
ergy function towards local minima. A relaxation dynamic of the Langevin
type has been extensively analysed (for a review, see [BCKM98,Cug03]), as it
provides a framework for studying off-equilibrium behaviours (such as the phe-
nomenon of ageing in glassy systems) and unveiled strong analogies between
disordered systems and other types of glasses where disorder is absent, such
as structural fragile glasses [Par06]. If the connections are not symmetric, an

1For a brief introduction to spin glasses and disorder averages, see section 4.A.1.
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3 Dynamics on random networks

energy function cannot be defined; however, a Langevin equation formalism
was developed in [CS87], where a set of local self-consistent equations for the
spin correlations and response functions is derived.

For discrete spins, the discontinuous nature of the variables rules out an
approach based on Langevin equations. Instead, the stochasticity of the dy-
namics can be formulated in a probabilistic setting, typically in terms of a
Glauber rule [Gla63] that - given the value of the spin variable at the current
time - specifies the probability of observing a given spin configuration at a
following time. Time can be considered either as a discrete or a continuous
variable, and the spin values can be updated all at the same time or sequen-
tially one by one, giving rise to diverse types of dynamics. For spin glass
models with hard spins, a path integral formalism to describe such Glauber
dynamics with continuous time was introduced by Sommers [Som87]. Crisanti
and Sompolinsky [CS88] observed that the mean-field equations for a network
with partially asymmetric couplings are quite difficult to solve, but they sim-
plify remarkably in the particular case of a network with fully asymmetric
couplings: two-times correlation decay to zero, and - in the N large limits -
the local fields can be replaced by a time-dependent Gaussian random field.

An alternative approach was proposed by Coolen and collaborators [CS93,
CS94,CLS96]. Their dynamical replica analysis is based on a generating func-
tional formalism and derives deterministic flow equations for macroscopic state
variables. Such works were followed by [NY96], where the Glauber dynamics
of the SK model is studied at high temperatures. The authors explicitly com-
pute the microscopic probability distribution of the spin configuration as a
function of time, via a high-temperature expansion.

The role of the degree of symmetry on the transient dynamics of a system
at zero temperature was analysed in [EO94]. A combination of dynamical
functional methods and Monte Carlo simulations allows us to identify – by
varying the average symmetry of the couplings – a transition from ergodic-
dynamics to a phase where a finite fraction of spins freezes2.

Models with fixed quenched disorder were studied more recently. Dynamical
TAP equations have been first derived for the spherical p-spin model in [Bir99].
This work also analyses the conditions under which the dynamics is a relax-
ation in the TAP free-energy landscape. Analogous TAP equations were also
recently found in [BSO16], where the model is extended to comprise generic
continuous variables and nonlinear interaction terms; the solution is found by
a generating functional approach closely related to the one that we will discuss
in Paper 1.

2A review of those and other methods used for both soft and hard spin models can be
found in [HKP91,Coo01].
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3.1 Introduction

For Ising spins, by information geometric arguments, Kappen and Span-
jers [KS00] argued that asymmetric networks at the stationary state obey the
same TAP equations (3.6) valid for the equilibrium model. This result is a
good approximation for weak couplings, but does not provide the exact mean
field description, as was later proved by Mezard and Sakellariou [MS11]. The
authors, following the approach of [CS88], observe that asymmetric networks
exhibit small correlations among spins at various times. A central limit the-
orem argument shows that effective fields are Gaussian distributed, and the
resulting mean-field description of the dynamics is exact in the thermodynamic
limit for weak and long-range couplings3. The whole transient dynamics for
networks with an arbitrary degree of symmetry was first studied in [RH11a],
where, using a generating functional approach, the authors derive TAP-like
equations via a small couplings expansion. Another derivation of these equa-
tions using information geometry was reported in [AM12]. However, in the
limit of an asymmetric network, their result does not agree with the exact
one of [MS11]. Saad and Mahmoudi extended the work of [MS11] to the
case of couplings with arbitrary symmetry [MS14]. The authors still consider
the effective fields as Gaussian distributed but introduce non-zero covariance
between spins at different times and provide recursive equations to compute
correlations at all times. The result improves on the other methods and recover
the exact theory for asymmetric networks; however, for a arbitrary degree of
symmetry, the exactness of this method in the limit N →∞ remains an open
question.

Paper 1 introduces novel approaches to the problem. First, two methods
for deriving a naive mean-field equation in the static case are extended to the
kinetic case: a variational approach based on minimising the Kullback-Leibler
divergence between the true distribution of spins and the distribution of in-
dependent trajectories, and a saddle-point approximation to the generating
functional. Then, two novel approximations are presented. In a variational
perturbative approximation, the action in the path integral representation of
the generating functional is expanded around a quadratic function in the fields
and conjugate fields; the latter function depends on variational parameters
that are optimised to obtain minimum sensitivity of the approximating func-
tional to the variational parameters. In other words, the generating functional
of the dynamics is approximated by a Gaussian distribution, and its param-
eters are later optimised. The result will strongly depend on the constraints
imposed on the parameters of such Gaussian distribution, in particular on its
covariance matrix. Finally, we present an extension of the Plefka expansion
for dynamics introduced in [RH11a].

3The result is not consistent with the one of [KS00]).
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3 Dynamics on random networks

Plefka’s expansion [Ple82] was originally performed to derive mean-field
(TAP) equations for the equilibrium Sherrington-Kirkpatrick model, by ex-
panding the free energy at fixed magnetisation (Gibbs potential) in powers
of the interaction strength. In the kinetic case, the variables of interest are
no longer single spins but entire spin trajectories, and a path integral formal-
ism is introduced to compute averages over trajectories; a Gibbs free energy
cannot be defined in the out-of-equilibrium scenario, but the logarithm of the
partition function at fixed moments over time will provide the analogous func-
tion to be expanded. While in the first generalisation to dynamics [RH11a] of
Plefka’s expansion only marginal first moments over time are fixed, in Paper
1 we will show that also the second order moments must be considered for a
correct analysis. The result will outperform other current methods in predict-
ing the time evolution of the single-spin magnetisations, and we conjecture
that it provides the correct mean field solution to the forward problem in the
thermodynamic limit of infinitely many particles when the couplings are weak
and long-ranged. In the discussion section, we will further compare among
different methods.

An introduction to Plefka’s expansion (and to the cavity method) is given in
section 3.A, where we derive the mean field (TAP) equations for the equilib-
rium Sherrington-Kirkpatrick model. Section 3.B reviews previous approaches
to the transient dynamics of an Ising model with parallel Glauber update rule.

3.2 Paper 1.

Author’s contribution: I performed the analytical and numerical calcula-
tions relative to: Section 5 (Extended Plefka expansion); Appendix D (Details
on the extended Plefka expansion); Appendix E (The YuleWalker equations).
I wrote the relative sections in the paper. I contributed to writing section 6
(Numerical results), Section 7 (Summary and Conclusions) and to the prepa-
ration of the figures.
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Abstract
We describe and analyze some novel approaches for studying the dynamics of
Ising spin glass models. We first briefly consider the variational approach
based on minimizing the Kullback–Leibler divergence between independent
trajectories and the real ones and note that this approach only coincides with
the mean field equations from the saddle point approximation to the generating
functional when the dynamics is defined through a logistic link function,
which is the case for the kinetic Ising model with parallel update. We then
spend the rest of the paper developing two ways of going beyond the saddle
point approximation to the generating functional. In the first one, we develop a
variational perturbative approximation to the generating functional by
expanding the action around a quadratic function of the local fields and
conjugate local fields whose parameters are optimized. We derive analytical
expressions for the optimal parameters and show that when the optimization is
suitably restricted, we recover the mean field equations that are exact for the
fully asymmetric random couplings (Mézard and Sakellariou 2011 J. Stat.
Mech. 2011 L07001). However, without this restriction the results are dif-
ferent. We also describe an extended Plefka expansion in which in addition to
the magnetization, we also fix the correlation and response functions. Finally,
we numerically study the performance of these approximations for
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Sherrington–Kirkpatrick type couplings for various coupling strengths and the
degrees of coupling symmetry, for both temporally constant but random, as
well as time varying external fields. We show that the dynamical equations
derived from the extended Plefka expansion outperform the others in all
regimes, although it is computationally more demanding. The unconstrained
variational approach does not perform well in the small coupling regime, while
it approaches dynamical TAP equations of (Roudi and Hertz 2011 J. Stat.
Mech. 2011 P03031) for strong couplings.

Keywords: random graphs, non-equilibrium processes, spin glasses, varia-
tional methods, perturbational methods

(Some figures may appear in colour only in the online journal)

1. Introduction

The kinetic Ising spin glass model is a prototypical model for studying the dynamics of
disordered systems. Previous work on this topic focused both on studying the average—over
couplings—behavior of various order parameters, such as magnetizations, correlations and
response functions, and in more recent years, developing approximate methods for relating
the dynamics of a given realization of the model to its parameters. The latter line of work has
received a lot of attention in recent years, in part, because of the applications it has on
developing approximate inference methods for point processes which in turn are receiving
particular attention due to the on going improvements in data acquisition techniques in
various disciplines in life sciences.

Most of the early work on the topic dealt with systems with symmetric interactions, until
Crisanti and Sompolinsky [3] studied the disorder averaged dynamics of Ising models with
various degrees of symmetry and Kappen and Spanjers [4] derived naive mean field and TAP
equations for the stationary state of the Ising model for arbitrary couplings, in both cases
considering Glauber dynamics. Roudi and Hertz [2] derived dynamical TAP equations
(hereafter denoted by RH-TAP) for both discrete time parallel and continuous time Glauber
dynamics using Plefka’s method [5], originally used for studying equilibrium spin glass
models, extended to dynamics. This was followed by [6] who reported another derivation of
these equations using information geometry following the approach of [4]. Mezard and
Sakellariou [1] developed a mean field method (hereafter denoted by MS-MF) which is exact
for large networks with independent random couplings; see also [7]. Two schemes for
improving the existing mean-field description were proposed in [8] an elegant generalized
mean field methods was followed in [9].

In the current paper we follow up on these efforts and report some new results on the
dynamics of kinetic Ising model with parallel dynamics. We first look at the relationship
between the saddle point approximation to the path integral representation of the dynamics
and the simplest variational approach based on minimizing the Kullback–Leibler (KL)
divergence between the true distribution of the spin trajectories and a factorized distribution.
Although for the standard kinetic Ising model the two methods yield the same equations of
motion, we see that this is not in general the case when the probability of spin configurations
at a given time given those of the previous time is not a logistic function of the fields. After
this, we consider two approaches for going beyond the saddle point solution of the path
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integral representation of the dynamics of the standard kinetic Ising model with parallel
dynamics (defined in more detail in the following sections).

In one of these approaches, which we refer to as gaussian average variational method, we
perform a Taylor expansion of the action in the path integral representation of the generating
functional around a quadratic function of the fields and conjugate fields. As described in
described in detail in section 4, we then choose the parameters of this function such that the
resulting functional minimally depends on these parameters. We derive analytical expressions
for these optimal solutions and show that for a fully asymmetric network under a further
assumption about the interaction between the fields and the conjugate fields, we can recover
the equations of motion for the magnetization identical to MS-MF equations [1]. Without this
assumption we observe that the resulting equations are different from MS-MF. In the second
approach, we go beyond the saddle point by performing an extended Plefka expansion. The
standard Plefka expansion for the equilibrium model involves performing a small coupling
approximation of the free energy at fixed magnetization and is the approach that was ori-
ginally taken in [2]. As we show here, however, similar to the soft spin models [10, 11], a
better description of the dynamics can be achieved by not only fixing the magnetizations but
also pairwise correlation and response functions while expanding around the uncoupled
model.

2. The dynamical model

We consider the synchronous dynamics of N interacting binary spins in the time window
T0,[ ] defined by
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is the total field acting on spin i at time t composed of the external field hi and the fields felt
from other spins in the system. The function +f H ts t i1i

( ( ))( ) is a generic transfer function or
conditional probability of the state of the spin i at time +t 1( ) given the field at time t. Our
goal will be to calculate the mean magnetizations of the spins.

The generating functional of the distribution P s T0:( ), expressed as a path integral is
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2 2
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where ... P⟨ ⟩ denotes averaging with respect to the history of trajectories defined by (1) and (2),
and
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be uniformly distributed, manifested in the factor 1 2N in (4), and that we refer to the two
auxiliary variables with the compact notation  º = =g t g t,i i i N t T1 ... , 0 ...{ ( ) ˆ ( )}
and  = D g t g td di t i i, ( ) ˆ ( ).

The magnetization of spin i at time t can then be obtained as the first derivative of the log-
generating functional:
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Let us make a brief note on how the the integral representation of the generating func-
tional in (4) and (5) has been derived. This is done by first replacing Hi(t) in (2) by gi(t) and
integrating over all gi(t) while enforcing that at each time step and for each spin =g t H ti i( ) ( )
by inserting δ-functions, d -g t H ti i[ ( ) ( )], in the integral. One then writes this delta function
in its integral representation
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which is how the g tî ( ) appear in the equations. This rewriting of the generating functional
constitutes the first steps in the Martin–Siggia–Rose–De Domenicis–Peliti formalism [12, 13]
once it is adapted for hard spins. For more details about this approach and a pedagogical
review on its application to soft and hard spin dynamics see [14, 15].

A logistic transfer function f in (2), such that =+f H ts t i1i
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( ( ) ( )), yielding the following probability distribution over spin paths
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corresponds to the standard kinetic Ising model with parallel update studied in previous
work [1, 2, 6, 9].

This path integral representation in (4) allows us to explicitly perform the trace over the
spins in the generating functional of (4) and (5) yielding
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3. Mean field

As a prologue to our more important results in the following sections, in this section we
review the derivation of mean field equations for the dynamical model in (2) using two
approaches. These are the saddle point approximation to the path integral representation of the
generating functional in (4), and the minimization of the KL distance between the true
distribution P in (1) and a factorized one. Despite being formally different methods, in the
literature they are both often referred to as mean field and it is indeed well know that for the
specific case of the equilibrium Ising model, they lead to the very same set of equations,
known as naïve mean field equations [16]. Throughout this section the transfer function f in
(2) is considered a generic function of the field Hi(t). Only towards the end of this section we
are going to consider f as a logistics function of the kinetic Ising model.

3.1. Saddle point mean field

In the equilibrium case, one way to derive the naïve mean field equations is as the equations
describing the saddle point approximation to a path integral representation of the free energy,
while the TAP equations are those derived by calculating the gaussian integral around the
saddle point [17]. (Another way is by means of Plefka expansion, which at this point we do
not discuss but will get back to later on). Let us consider this saddle point approach for the
kinetic model in (2) and the corresponding generating functional (4). Defining a complex
measure q as

⎡⎣ ⎤⎦
y

y
- =

-

-

åy -

q s t g t t t
f g t

F g t t t
g

g
1 , ,

1 e

1 , ,
, 11i i i

s t i
s t t J g t

it i i

i
i

i i j ji j

( ( )∣ ( ) ˆ ( ) ( )) ( ( ))
( ( ) ˆ ( ) ( )) ( )( )

( ) ( ) ˆ ( )

where y-F g t t tg1 , ,it i i( ( ) ˆ ( ) ( )) is the normalization constant, the saddle point equations for
the generating functional of (4), namely the stationary points of the function yL h, ,[ ], in
(5), g ti

SPˆ ( ) and g ti
SP ( ), read

=
¢

y

+

+ + + +

g t
f g t

f g t
ai , 12i

s t i

s t i q s t g t t tg

SP 1
SP

1
SP

1 , 1 , 1

i

i
i i i

SP SP

ˆ ( ) ( ( ))
( ( )) ( )( )

( ) ( ( ) ∣ ( ) ˆ ( ) ( ))

å= + y-g t h t J s t b, 12i i
j

ij j q s t g t t tg
SP

1 , ,j j j
SP SP( ) ( ) ⟨ ( )⟩ ( )( ( ) ∣ ( ) ˆ ( ) ( ))

where we have defined ¢ º ¶
¶

f yx
f y

y
x( ) ( )

. Notice that in the limit y  0, =g 0SPˆ is a self-
consistent solution of the previous saddle point equation (12a), while (12b) turns into

å= + -g t h t J s t . 13i i
j

ij j f g t
SP

1sj t j
SP( ) ( ) ⟨ ( )⟩ ( )( ( ))( )

The approximate log generating functional y y- +Z Lh J hln , , , , const.SP[ ] [ ] allows
us to estimate the magnetizations using (6) and (13) as

= å- + -m t s t . 14i i f h t J m t1 1si t i j ij j( )( ) ⟨ ( )⟩ ( )( ) ( )( )

These are the saddle point mean field equations for a general function f. Note that the
marginal here yields the same expression as the conditional probability in (2), namely

+f H ts t i1i
( ( ))( ) except that in (14), the fluctuating field Hi(t) has been replaced by an effective
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(mean) field = + åH t h t J m ti i j ij j
eff ( ) ( ) ( ), in analogy with the physical intuition behind the

original formulation of the mean field theory by Weiss [18].

3.2. Mean field from KL distance

A second way of deriving mean field equations, usually employed in the machine learning
community, is based on a variational approximation. Within this framework, one approx-
imates the model distribution P s T0:( ) with a Markovian process Q s T0:( ) that factorizes over
the spin trajectories [19]. In other words, assuming

= +
=

-

Q Q t t Qs s s s1 0 , 15T

t

T
0:

0

1

( ) ( ( )∣ ( )) ( ( )) ( )

where

+ = +
=

Q t t Q s t s ts s1 1 , 16
j

N

j j
1

( ( )∣ ( )) ( ( )∣ ( )) ( )

one minimizes the KL divergence, D Q Ps sT T
KL

0: 0:[ ( ) ( )], between the approximate
distribution Q s T0:( ) and the model P s T0:( ). In the case of the model defined in (2) and an
approximate distribution satisfying (15) and (16), the KL-divergence can be rewritten as

ºD Q P Q
Q

P
as s s

s
s

Tr ln , 17T T T
T

TsKL
0: 0: 0:

0:

0:
T0:[ ( ) ( )] ( ) ( )

( ) ( )

å

å

åå

= +
+
+

= +
+

+

+ + +

+

+

¹
+

Q t Q t t
Q t t

P t t

Q s t Q s t s t
Q s t s t

u s t s t

Q s t Q s t s t Q s t s t b

s s s
s s
s s

Tr Tr 1 ln
1

1

Tr Tr 1 ln
1

1

Tr Tr 1 ln 1 , 17

t
t t

t
s t j s t j j

j j

jt j j

t i j
s t i s t i i i i

s s 1

1

1

j j

i i

( ( )) ( ( )∣ ( )) ( ( )∣ ( ))
( ( )∣ ( ))

( ( )) ( ( )∣ ( )) ( ( )∣ ( ))
( ( )∣ ( ))

( ( )) ( ( )∣ ( )) ( ( )∣ ( )) ( )

( ) ( )

( ) ( )

( ) ( )

where the first line is just the definition of the KL-divergence, in the second line we have
exploited the Markovian property of P and Q and assumed =P Qs s0 0( ( )) ( ( )), while in the
last line we have use the factorizability ofQ over spin trajectories. Notice that the last equality
is valid for any choice of j and that we have defined ujt as

+ º + ++u s t s t Q t t P t ts s s s1 exp Tr 1 , ln 1 18jt j j t t j js s1 ,j j
( ( )∣ ( )) { ( ( ) ( )) ( ( )∣ ( ))} ( ){ ( ) ( )} ⧹ ⧹⧹ ⧹

and ts j ( )⧹ denotes all components of ts( ) apart from j. Observe that thanks to the Markovian
property of the two distributions P and Q we were able to reduce the average over a NT
dimensional space to a sum of T averages over N2 dimensional spaces.

In order to determine the variational mean field equations, one has to minimize the KL-
divergence in the space of marginals Q s tj( ( )) and transition probabilities +Q s t s t1j j( ( )∣ ( )).
Given that these are not independent, we enforce the constraints:

+ = +Q s t Q s t s t Q s t1 Tr 1 19j s t j j jj
( ( )) ( ( )∣ ( )) ( ( )) ( )( )

using Lagrange multipliers l s tj( ( )), ultimately optimizing the following cost function:



å l
º

- - - --

D Q P

s t Q s t Q s t s t Q s t

s s

Tr Tr 1 1 . 20

T T

j t
s t j j s t j j j

KL
0: 0:

,
1j j

[ ( ) ( )]
( ( )){ ( ( )) ( ( )∣ ( )) ( ( ))} ( )( ) ( )
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The stationary points of  in (20) are the zeros of the functional derivatives

d
d

l

l

= +
+

+
-

+ + +

+

+

Q s t
Q s t s t

Q s t s t

u s t s t
s t

s t Q s t s t a

Tr 1 ln
1

1

Tr 1 1 , 21
j

s t j j
j j

jt j j
j

s t j j j

1

1

j

j

( ( )) ( ( )∣ ( )) ( ( )∣ ( ))
( ( )∣ ( )) ( ( ))

( ( )) ( ( )∣ ( )) ( )
( )

( )

⎧⎨⎩
⎫⎬⎭

d
d

l
+

=
+

+
+ + +

Q s t s t
Q s t

Q s t s t

u s t s t
s t b

1
ln

1

1
1 1 21

j j
j

j j

jt j j
j( ( )∣ ( )) ( ( )) ( ( )∣ ( ))

( ( )∣ ( )) ( ( )) ( )

that can be reduced to the relation:

+ =
+

++
Q s t s t

u s t s t

u s t s t
1

1

Tr 1
. 22j j

jt j j

s t jt j j1j

( ( )∣ ( )) ( ( )∣ ( ))
( ( )∣ ( )) ( )

( )

It is worth emphasizing that this solution is valid for any Markov chain P and any
approximate Markov distributionQ that factorizes over the spin trajectories. From now on we
will require the spins at time t to be conditionally independent under the model distribution, as
in (2). This assumption and a little algebra allow us to simplify (22) as follows:

å

å
+ =

+

+

+

+ +

Q s t s t
Q t f h t J s t

Q t f h t J s t

s

s
1

exp Tr ln

Tr exp Tr ln
, 23j j

t j s t j l jl l

s t t j s t j l jl l

s

s

1

1 1

j j

j j j

{ }
{ }

( )
( )[ ( )∣ ( )]

[ ( )] ( ) ( )
[ ( )] ( ) ( )

( )( ) ⧹ ( )

( ) ( ) ⧹ ( )

⧹

⧹

where we imposed the normalizability to Q.
If there are no self-couplings in the model distribution P, the right-hand side of (23) will

not depend on sj(t) and consequently the solution for the joint distribution Q s T0:( ) will
factorize in time. The spin independent 1st order Markov chain Q that best approximates the
model P defined in (2) with =J 0jj , is actually a 0th order Markov chain. Additionally the
absence of self-interactions in P makes (23) an explicit relation between the marginal of spin j
at time +t 1 and the marginals of all spins but j at the previous time step t. Since we are
dealing with a system of binary units, marginals are fully determined by their first moments,
thus the marginal of spin j at time +t 1, in (23), becomes a function of the magnetizations at
time t. Taking one step further one can easily verify that the first moments of (23) equal the
naïve mean field magnetizations of (14) if the transition probability +f H ts t i1i

( ( ))( ) belongs to
the exponential family with the field Hi(t) as natural parameter

=
+

++f H t
a s t H t

a s t H t

exp 1

Tr exp 1
, 24s t i

i i

s t i i
1i

i

( ( )) [ ( ( )) ( )]
[ ( ( )) ( )] ( )( ) ( )

where a (·) is a generic function of the state +s t 1i ( ). For the kinetic Ising model a (·) is the
identity function and the equations for the magnetizations read:

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥å= - + -m t h t J m ttanh 1 1 , 25i i

j
ij j( ) ( ) ( ) ( )

equivalent to (14) and know as the dynamical Naïve mean field equations [2].

4. Gaussian average method

What we have shown so far is that the saddle point approximation to the generating functional
for the kinetic Ising model and the one based on the KL divergence match each other,
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although this is not the case for non-logistics transfer functions. In this section, we study an
improvement over the saddle point approximation. Our approach is to find the optimal
gaussian distribution for approximating the generating functional perturbatively, and then
using the resulting approximation to calculate the magnetizations. This can be thought as an
extension to complex measures of a standard variational method: it was taken by Müschlegel
and Zittartz [20] for the equilibrium Ising model, while a general framework is set in [21]. We
describe this approach in detail in this section.

4.1. Optimization

We consider the first order Taylor expansion of the log-generating functional defined in (4)
and (5) around a gaussian integral:




ò
ò

ò
y p- - +

-
+ +Z D

D L L

D
NT Nh Jln , , ln ln 2 ln 2, 26

s( [ ]) ˜ ˜ ( )
˜ ( )

where we have defined the complex gaussian measure

 = -D D ae , 27Ls˜ ( )
 h h= - -L bS

1

2
27s ( ¯ ) ( ¯ ) ( )

parametrized by the interaction matrix S and the mean h̄. Here we split the vectors h̄ into
h h =

-t t, t
T

0
1{ ( ) ˆ ( )} and h t( ) into h =ti i

N
1{ ( )} similar to . From now on we will use the form of

the action L in (9) since we are going to focus on the standard parallel update kinetic Ising
model.

The choice of a quadratic form for Ls allows us to easily calculate many of the terms in
(26), simplifying the expression for the log-generating functional as

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥









ò

ò

ò

ò

å å

å åå

å å

å å å

å

å

h h

h
p

h y

h

p
y h

p
h y

p
h

- = - - -

+ - ¢ ¢ - + - +

- ¢ -

- ¢ - ¢ -

- ¢ ¢ - + - +

+ ¢ ¢ + +

+ + +
-

=

-

Z NT t t

t h t D lc g t t t

J g t J t

D lc J g J

D lc g T T T

D lc g t t N

S S

S

S

S

S

ln
1

2
ln det i i

i
det

2
1 1 i

i i

det

2
i 0 i 0 i 0

det

2
1 1 i

det

2
ln 2,

28

i t
Nt i Nt N i

i t
i i

i t
i i NT

i t

T

i i i

l
li l

l
li l

NT
i

i
l

li l
l

li l

NT
i

i i i

NT
i t

i i

,
2 ;2
1

,

, 1

1

,

( ) ˆ ( )

ˆ ( ) ( ) ( ) ˜ [ ( ) ( ) ( )

ˆ ( ) ˆ ( )

( ) ˜ ( ) ˆ ( ) ˆ ( )

( ) ˜ [ ( ) ( ) ( )]

( ) ˜ [ ( ) ( )]
( )

where we have replaced (9) in (26) and we have performed the change of variables
  h¢ = - ¯ . Notice that when not stated otherwise the sum over t runs from t=0 to
= -t T 1. From now on we will just drop off the superscript ′ from variables .

If all measures were real probability measures, the first order approximation on the right-
hand side of (26) would be an upper bound to the free energy - Zln . In this case a mini-
mization of the bound with respect to the variational parameters would be the obvious choice
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for optimizing the approximation. Since integrations in our case are over complex measures
this argument cannot be applied. Instead, we base our optimization on the idea of the var-
iational perturbation method [22]: if the Taylor series expansion of the log generating
functional (4)–(9) would be continued to infinite order it would represent the functional and
the resulting series would be entirely independent of the parameters of the gaussian measure
(27a). On the other hand, the truncated series (26) inherits a dependence on the variational
parameters h, ĥ, S. Hence, one would expect that the truncation represents the most sensible
approximation if it depends the least on these parameters. One should therefore choose their
optimal values such that the approximation to Zln is the most insensitive to variations of
these parameters. This simply corresponds to computing the stationary values of the log
generating functional in the h, ĥ, S space. This requirement of minimum sensitivity to the
variational parameters was introduced in [23] as an approximation protocol.

Using the logic in the previous paragraph and setting the first derivative of the expression
for - Zln in (28) with respect to h tjˆ ( ) to zero, one gets the equation for stationary h tj ( ), the
first moment of the gaussian form for gj(t):

åh m= +t h t J t , 29i i
j

ij i( ) ( ) ( ) ( )

where we have defined for = ¼ -t T1, , 1:

⎡
⎣⎢

⎤
⎦⎥ò åm

p
h y h= - + - + - +t D g t t t J g t t

Sdet

2
tanh 1 1 i i ,

30

i NT i i i
l

li l l( ) ( ) ˜ ( ) ( ) ( ) ( ˆ ( ) ˆ ( ))
( )

while for t=0 and t=T we have respectively:

⎡
⎣⎢

⎤
⎦⎥ò åm

p
y h= - +D J g a

S
0

det

2
tanh i 0 i 0 0 , 31i NT i

l
li l l( ) ( ) ˜ ( ) ( ˆ ( ) ˆ ( )) ( )

òm
p

h y= - + - +T D g T T T b
Sdet

2
tanh 1 1 i . 31i NT i i i( ) ( ) ˜ [ ( ) ( ) ( )] ( )

Solving h-¶ ¶ =Z tln 0i ( ) gives:

òh m
p

h= + - +t t D g t t
S

i 1 i
det

2
tanh . 32i i NT i iˆ ( ) ( ) ( ) ˜ [ ( ) ( )] ( )

Looking for the stationary points of (26) with respect to -S 1 corresponds to solving the
following set of equations:
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⎪
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where we have defined
 

¶ º¢
¶

¶ ¶ ¢it jt t t,
i j

2

( ) ( ) .

4.2. Equations for the magnetizations

In the previous subsection we derived expressions for the parameters of the gaussian used
for perturbative approximation of the log-generating functional at fixed ψ. Now we
want to derive an expression for the magnetizations using (6). We will first perform
the derivative of (28) with respect to ψ; notice that even h, ĥ and S are ψ dependent, such
that (6) reads:

å å

å

y

h

y h

h

y h

y
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¶
¶

+
¶ ¢

¶
¶
¶ ¢

+
¶ ¢

¶
¶
¶ ¢

+
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¶
¶
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¢ 

m t
Z

t

t

t

Z

t

t

t

Z

t

S t t

t

Z

S t t

i lim
ln ln ln

, ln

,
. 34

i
i j t

j

i j j t

j

i j

l j t t

l j

i l j

0 , ,

, , ,

,

,

( ) ( )
( )
( ) ( )

ˆ ( )
( ) ˆ ( )

( )
( ) ( ) ( )

However, since in our optimization scheme we looked for the stationary values of Zln
with respect to the variational parameters, y¶ ¶Zln will only consist of its explicit derivative
with respect to ψ, leading to:

m=
y

m t tlim 35i i
0

( ) ( ) ( )

for all t = 0,K,T and m ti ( ) has been defined in (30)–(31b).

4.3. The optimized values of the parameters

In principle, one needs to solve the full set of equations (29)–(33) and take the limit ofy  0
to calculate the magnetization in (35). This is obviously a very difficult task to do analytically
given the high dimensional integrals that appear in (30)–(33) and that the equations have
to be solved simultaneously. The solutions, however, can be very much simplified if we
assume

h =
y

tlim 0 36i
0
ˆ ( ) ( )

" "i t, . With (36), which we will justify in section 4.4 below, the optimal interaction matrix S
in (33) in the limit y  0 assumes the following block tridiagonal structure:
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⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥
=






     

S

S S
S S S

S S S
S S S

0, 0 0, 1 0 0 0
1, 0 1, 1 1, 2 0 0
0 2, 1 2, 2 2, 3 0
0 0 3, 2 3, 3 3, 4

, 37

( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( )

where

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥


 g

l=
-

- + = +
t t

t
t t

t tS S,
0 i
i

, , 1
0 , 1
0 0

, 38( ) ( ) ( ) ( ) ( )
the blocks ¢t tS ,( ) are of size ´N N2 2 , + = +t t t tS S, 1 1,( ) ( ) and

åg = - = ¼ -t J J m t t T a1 0, , 1, 39ij
k

ik jk k
2( ) ( ( ) ) ( )

l + = - + = ¼ -t t J m t t T b, 1 i 1 1 0, , 2. 39ij ji i
2( ) ( ( ) ) ( )

Observe that the matrix S in (37) is a symmetric complex matrix (not Hermitian), whose
Hermitian part is positive symmetric. (Recall that the Hermitian part of a matrix S is defined
as +S S 2( )† .) This is consistent with its derivation given that—as pointed out in [24]—the
gaussian integral ò D̃ converges only if the Hermitian part of S is a positive symmetric
matrix.

In (39a) and (39b) we implicitly state that =Sdet 1: as a matter of fact it can be proven
to be a mere consequence of the block structure of the matrix S, as shown in appendix A.
Since ò p=D S2 detNT˜ ( ) this means that the gaussian integral and the model log gen-
erating functional match in the limit y  0.

Finally we can substitute the optimal values of the variational parameters in (35) and
exploit (32) to get:

ò åp
= - + - + -m t D g t h t J m t

1

2
tanh 1 1 1 40i NT i i

j
ij j( ) ( ) ˜ [ ( ) ( ) ( )] ( )

for = ¼ -t T1, , 1.
We are now left to evaluate a multidimensional integral in (40). In fact the integration in

(40) can be reduced to a one-dimensional integral marginalizing the multivariate gaussian
distribution, yielding

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ò å

p
s= + - + -

-
m t

x
x t h t J m t

d e

2
tanh 1 1 , 41i

x

i
j

ij j

22

( ) ( ) ( ) ( ) ( )

s = -
- + - +t S , 42N t i N t i

1
2 1 ,2 1( ) ( ) ( )( ) ( )

where the integral is now over = -
- + - +x g t Si N t i N t i

1
2 1 ,2 1( ) ( ) ( ) ( ) , a normally distributed,

zero mean unit variance, random variable.
For performing the one-dimensional integral in (41), we need to compute the entries of

the inverse of matrix S. In appendix B we demonstrate that, given S as defined in (37)–(39b),
the entries of -S 1 in which we are interested in can be calculated recursively as

g g g l g l= = - - - -+ +
- t t t t t t t tS where 1, 1 1, . 43Nt i Nt i ii2 ,2
1 ˜ ( ) ˜ ( ) ( ) ( ) ˜ ( ) ( ) ( )

As we show in appendix B, g tii˜ ( ) can only take positive values and therefore the integral
in (41) is physically well-defined.
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Recalling the definitions of the matrices g andl , one can verify that the magnetizations
in (41) only depend on the past magnetizations ¢m tj ( ) with ¢ <t t, j = 1,K, N. Since this
dependence goes back to ¢ =t 0 it is natural to wonder if the error in estimating the past
magnetizations would accumulate impairing the inference process. We notice (not included in
section 6) that for the gaussian average method knowledge of the history of the experimental
magnetization—knowing g -t 1ii˜ ( ) when computing mi(t) with (41)—does not affects the
reconstruction significantly. Whether we are using experimental magnetizations or approx-
imate ones in (43), we observe that g -t 1ii˜ ( ) grows exponentially with time for strong
couplings while it converges to a finite value for weak couplings. This behavior can be
understood by studying the stability of the map (43) of g -t 1˜ ( ) into g t˜ ( ) that defines a
dynamical system, as we do in appendix C. Averaging over the disorder one realizes that this
dynamical system is chaotic for couplings strength above a certain critical value. Its critical
value depends on the degree of symmetry of the connectivity and on the presence of an
external field.

4.4. The solution limψ-0bη i ðt Þ ¼ 0

In principle, the value of limit of y  0 of h tiˆ ( ) that satisfy the optimality equations, may be
non-zero. In this section, we justify the choice of h =y tlim 0i0 ˆ ( ) that we made in the
previous section. We first note that zero is a good candidate for the optimal value of
h =t g ti i Lsˆ ( ) ⟨ ˆ ( )⟩ —here ¼ Ls⟨ ⟩ indicates the average under the complex measure -e Ls in (27a)
and (27b)—since

=
y

g tlim 0, 44i L
0
⟨ ˆ ( )⟩ ( )

where L for the kinetic Ising model has been defined in (9) and ¼ L⟨ ⟩ indicates the average
under the complex measure -e L . This choice for the mean in the gsˆ can be justified by
analogy with the mean in the gs: the stationary value for latter is also the saddle point value of
the kinetic Ising generating functional, while the saddle point in the gsˆ is conventionally set
to zero.

Furthermore, we can show that h =y tlim 0i0 ˆ ( ) yields a consistent solution. To do this
we first note that by inverting the matrix S, as shown in appendix B, two point correlation
functions - ¢g t g t1i j Ls

⟨ ( ) ˆ ( )⟩ and ¢g t g ti j Ls
⟨ ˆ ( ) ˆ ( )⟩ are both zero, where notation ¼ ¢Ls⟨ ⟩ indicates

averages under the gaussian measure - ¢e Ls , with  ¢ =L Ss
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2
. Consequently, we have
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Now, note that the previous equality corresponds to setting h =t 0iˆ ( ) in (32).
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4.5. The fully asymmetric limit

In [1] Mezard and Sakellariou derive equations for the magnetizations that are exact for fully
asymmetric couplings:

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ò å

p
g= - + - + --m t

x
h t J m t x t

d

2
e tanh 1 1 1 , 46i

x
i

j
ij j ii

22( ) ( ) ( ) ( ) ( )

where g tii ( ) has been defined in (39a).
In section 4.1 all entries of S were free to be optimized. However, we could have

assumed that the blocks corresponding to l -t t1,( ) are set to zero a priori. By looking at
(41) and (43) one easily realizes that with this constraint our optimization would have lead to
(46), which is exact in the fully asymmetric limit. Notice that this prescription onl would not
affect the optimal value of any other variational parameter, since we optimized Zln inde-
pendently with respect of h, ĥ or ¢t tS ,ij ( ).

5. Extended Plefka expansion

As mentioned in the Introduction, two particularly powerful approaches to studying dis-
ordered systems both in machine learning and statistical physics community are variational
and weak coupling expansions. In the previous sections we reported some results regarding
the variational approach. In this section we aim at developing a comprehensive weak coupling
expansion for the disordered spin systems.

Weak coupling expansions in field theory and statistical physics of disordered systems
take several forms. One of the most powerful amongst these, which has proven to be parti-
cularly useful for studying the equilibrium properties of glassy systems, is the Plefka
expansion. The Plefka expansion was originally performed for the equilibrium Sherrington–
Kirckpatrick model by expanding the Gibbs free energy at fixed magnetization, enforced via a
Legendre transform, around the free energy of an uncoupled system. To the first order in J it
yields the naive mean field results while to the second order the TAP equations are recovered.
Although higher order terms vanish for the SK model, they can in general be computed [25].

In performing the Plefka expansion for the equilibrium model with binary spins it is
sufficient to fix the magnetization and this has been the line taken by Roudi and Hertz in
deriving Plefka expansion and dynamical TAP equations for the kinetic Ising model. How-
ever, in contrast to the equilibrium case, for the dynamics the magnetization is not the only
relevant order parameter. Including other observables in the Plefka expansion, namely the
correlation and response functions, is what we do in this section. As we will show with
numerical results in the next section, this will lead to a significant improvement for predicting
the dynamics of the system.

Instead of the generating functional in (4) and (5), let us now consider the following
functional:

 òy y
p

=a ah hZ D LC B R C B R s, , , ,
1

2 2
Tr exp , , , , , , , 47

N NT s[ ˆ ˆ ˆ ] ( ) ( [ ˆ ˆ ˆ ]) ( )
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with
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where we have introduced the parameter α to control the interaction strength. The
introduction of the new auxiliary fieldsC B,ˆ ˆ and R̂ in the action (48) is related to the averages
of the observables that we want to constrain when performing the Legendre transform. In
particular, here we decide to fix all marginal first and second moments over time. One can
find the moments and the physical meaning of these auxiliary fields by first derivatives of the
generating functional with respect to the fields as follows:
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where a⟨ ⟩ denotes averaging over the distribution defined by the measure inside the
functional (47). Namely, for any function F s( ) of the trajectory of spins s we define:
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The moments of the original dynamical system (2) can be found by setting the auxiliary fields
to zero and a = 1 at the end of the calculation. Note that =C t t, 1( ) and its conjugate
field =C t t, 0ˆ ( ) .

The Legendre transform of Zln is given by
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where the fields y h C B R, , , ,ˆ ˆ ˆ in the above equation are to be considered as functions of the
moments, and dependent on the α parameter, according to the following set of equations:
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We now perform a second order expansion of Ga around a = 0 and consider the set of
equations (52) within the expansion; the details of the calculation are reported in appendix D.
Setting the auxiliary fields to zero, we can extract the value of the fields y h C B R, , , ,0 0 0 0 0ˆ ˆ ˆ
as functions of the correct (within the expansion) marginal first and second moments. Those
fields thus represent effective external fields which have to be applied to the model without
interactions (a = 0) to obtain the same moments as the interacting model. Hence, we may
consider y hZ C B R, , , ,0

0 0 0 0 0[ ˆ ˆ ˆ ] as the generating functional for the true marginal distribu-
tions, giving us an effective non-interacting description of the true interacting dynamics. The
explicit calculation (appendix D) yields = Z h Z hi i i

0 0[ ] [ ], where
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and where f ti ( ) is a gaussian random variables, drawn independetly for each i, with zero
mean and covariance

åf f ¢ = ¢ - ¢t t J C t t m t m t, . 54i i
j

ij j j j
2⟨ ( ) ( )⟩ [ ( ) ( ) ( )] ( )

This corresponds to a stochastic equation for a single spin, where each spin i is subjected to an
effective field
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The effective field in (55) is composed of a coloured gaussian noise (f), a naive mean field
(the second term), a retarded interaction with the past values of the spins (third term) and
finally the external field (hi(t)).

The retarded interactions and the noise covariance have to be computed as averages from
the entire ensemble of independent spins. Luckily, this can be done in a causal fashion, i.e. the
spin dynamics depends only on past spin history. However, this can not be done analytically,
although one may proceed again with a perturbation expansions in order to get equation of
motions for one and two time functions. The fact that the external noise is gaussian should be
helpful. As an alternative, we have resorted to numerical simulations, where the necessary
averages are estimated from a large number NT of samples of trajectories. Sample averages
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will be denoted by overbars; namely, for any function F sk k( ) of the kth trajectory of spins sk

we define the following average:

å=
=

F
N

F
1

. 56
T k

N
k

1

T ( )

In order to compute the retarded interaction ¢R t t,i ( ), we recall that given a vector f with
gaussian distributed components f t( ), with zero mean and covariance matrix

f f ¢ = ¢t t t t,⟨ ( ) ( )⟩ ( ), and given a function fF ( ) of the vector f, the following relation
holds
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as can be shown using integration by parts. By considering the function
f f= ºF s t s t;( ) ( ) ( ) and using (D.19) one finds the following equation relating the

response and correlation functions:
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The algorithm can be described as follows.

• Initial condition: set = = =s i N k N0 1, 1 ... , 1 ... .i
k

T( )
• For =t T1 ... :
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using the fields -g t 1i
k ( ) calculated at the previous time step.

(ii) Compute the sample averages

¢ = - ¢ ¢ = - =C t t g t s t t t i N, tanh 1 , for 1 ... 1, 1 ... .i i i( ) [ ( )] ( )

(iii) Draw the noise variables f = =t i N k Nfor 1 ... , 1 ... ,i
k

T( ) from the conditional
probability f f f -p t t0 ... 1 ,i

k
i
k

i
k( ( )∣ ( ) ( )) which can be computed using the Yule

Walker equations (appendix E).
(iv) Compute the sample averages that will be needed in (v):

f f¢ = - ¢ ¢ = - =s t t g t t t t i Ntanh 1 , for 1 ... 1, 1 ... .i i i i( ) ( ) [ ( )] ( )

(v) Compute ¢ ¢ = -R t t t t, , for 1 ... 1i ( ) using (58) by solving the system of linear
equations:
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(vi) Compute the fields
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(vii) Compute the magnetizations at time +t 1:

+ = =m t g t i N1 tanh , for 1 ... .i i( ) [ ( )]

To conclude this section, let us point out that the mean field result (46), which is exact for
asymmetric networks in the thermodynamic limit for gaussian couplings with variance N1 ,
can be obtained in two ways. One either considers the result (54) and neglects the term J Jij ji

for an asymmetric network in the limit of large N, or one works with a simplified Plefka
expansion where all two-time moments for different times are excluded from the beginning.
Hence, from the second moments, one keeps only B t t,( ) in the expansion.

6. Numerical results

In the previous sections we studied analytically two approaches to improve on the saddle
point approximation to the generating functional of the kinetic Ising model with synchronous
update. In section 4.5 we have argued that the constrained gaussian average optimization
leads to the mean field (MS-MF) equations of [1], whose performances was studied in [26].
One could wonder how this compares to the unconstrained gaussian average method, and so
we iterated (41) and (43) to reconstruct the entire dynamics of magnetizations. In order to
estimate the magnetizations for the extended Plefka expansion described in the previous
section we designed the algorithm explained in section 5. Thus we can evaluate numerically
the goodness of the two approximations in terms of magnetizations and compare them with
existing algorithms. Specifically we investigate how they perform with respect to three mean
field methods, namely Naive mean field, dynamical TAP (RH-TAP) equations of [2] and MS-
MF equations of [1]. To recapitulate, Naïve mean field and TAP equations can be obtained
via perturbative expansion in the magnitude of the couplings of the Legendre transform of the
log generating functional at fixed magnetizations [2], without making any restriction on
symmetry and distribution of the couplings. The first order expansion gives Naïve Mean
Field, while second order terms lead to RH-TAP. MS-MF equations can be derived via central
limit theorem arguments exploiting the fact that the couplings are independent identically
distributed random variables with variance that scales as N1 [1], without making any
assumption on the couplings strength.

RH-TAP magnetizations under the kinetic Ising model with synchronous update are:

⎡
⎣
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⎦
⎥⎥å g= - + - - -m t h t J m t m t ttanh 1 1 1 , 59i i

j
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where g -t 1ii ( ) has been defined in (39a). MS-MF equations correspond to (46) and Naïve
mean field to (25).

In order to test the performances of our methods as a function of couplings asymmetry
and strength we chose our couplings, following Crisanti and Sompolinsky [3]:
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Figure 1. Mean squared error of Näive mean field (blue), RH-TAP (green), MS-MF
(red), unconstrained gaussian average approach (light blue) and extended Plefka
(magenta) for predicting entire dynamics of the magnetizations. The mean squared
error is plotted as a function of the couplings strength g for a system of 50 spins. We
have used 100 time steps and 50 000 repeats to calculate the experimental
magnetizations and have averaged the errors over 10 realizations of the couplings.
The error bars are standard deviations over these realizations. The number of sample
trajectories used in the algorithm for the extended Plefka method is NT = 50 000. The
different panels correspond to different values of the asymmetry parameter
=k 0, 0.5, 1 from top to bottom. Left: stationary external field drawn independently

for each spin from a normal distribution (zero mean, standard deviation 0.5). Right:
sinusoidal external field with amplitude 0.5.
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= +J J kJ , 60ij ij ij
sym antisym ( )

where =J Jij ji
sym sym and = -J Jij ji

antisym antisym, while k is the parameter that controls the
asymmetry, interpolating between the fully asymmetric =k 1( ) and the fully symmetric

=k 0( ) distributions. We draw all the couplings Jij
sym and Jij

antisym independently from a
distribution with zero mean and variance:

Figure 2. Mean squared error of Naive mean field (blue), RH-TAP (green), MS-MF
(red), unconstrained gaussian average approach (light blue) and extended Plefka
(magenta) for predicting entire dynamics of magnetizations. The mean squared error is
plotted as a function of the system size N. We have used 100 time steps and 50 000
repeats to calculate the experimental magnetizations and have averaged the errors over
10 realizations of the couplings. The error bars are standard deviations over these
realizations. The number of sample trajectories used in the algorithm for the extended
Plefka method is NT = 50 000 for =N 25, 75, 100, while NT = 100 000 for N=200.
Stationary external field drawn independently for each spin from a normal distribution
(zero mean, standard deviation 0.5). (A): symmetric case k=0, couplings strength
g=1. (B): fully asymmetric case k=1, g=1. (C): k=0, =g 0.1; unconstrained
gaussian average, MS-MF and RH-TAP curves overlap. (D): k=0, g=2. Notice the
different scale on the y-axis in (C) with respect to the other panels.
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where g controls the strength of the couplings.
We initialize the algorithms with the same initial condition and then we iterate them for

reconstructing the whole dynamics of magnetizations. We compare the predicted magneti-
zations with the experimental ones computing the mean square errors:

åå= -
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m t m tMSE
1 1

, 62
i
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t

T

i i
J1 1

exp 2
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( ( ) ( )) ( )

where m ti
exp ( ) are obtained by sampling the kinetic Ising model distribution of (8).

The results are shown in figure 1. From these plots it is clear that, apart from Naïve Mean
field, all methods that we considered are compatible in the high temperature limit. At lower
temperatures the extended Plefka expansion is superior independently of the external field.
Note, however, that for fully asymmetric couplings and sinusoidal external field the MS-MF
method is performing slightly better than the extended Plefka approximation. This is likely
due to the finite size effects, since the two approaches are equivalent for asymmetric networks
with large N, as explained in section 5. Regardless the degree of symmetry of the couplings
and the external field RH-TAP systematically improves on the unconstrained gaussian
average approach, which fails at intermediate temperatures. The fact that the reconstruction is
noisier with respect to [26] is due to error propagation during the dynamics.

The scaling of the MSE errors with N is shown in figure 2. Numerical simulations show
that the error of the extended Plefka method decays with the system size N for every value of
the parameters g and k, while the errors of the RH-TAP and MS-MF approximations decrease
with N only in the range of the parameters for which the the approximations were developed,
which corresponds respectively to a symmetric network with small couplings and to an
asymmetric network. The error computed using Naïve mean field and unconstrained gaussian
average approximations shows no scaling with N. This seems to suggest that the extended
Plefka expansion provides an accurate mean field description of the dynamics. Notice
however that evaluating the local moments with grater accuracy requires considering the
whole history of the single spin trajectory and that the complexity of the algorithm described
in section 5 scales with the degrees of freedom as +T N TNNT2 . To speed up the algorithm
one could argue that, when the couplings Jij scale as N1 , the two sums

å å¢ ¢J C t t J J R t t, ; ,
j

ij j
j

ij ji j
2 ( ) ( )

appearing in (54) and (55) can be replaced by their self-averaging value
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j
j

j
j

2 2
2

2
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where we considered the distribution (61) for the couplings. This would allow us to write a
self-averaging version of (58) and the computational cost of the algorithm would reduce to

+T TNNT2 . We postpone this analysis to future work.

7. Summary and discussion

In this paper we studied new approximations for predicting the dynamics of the kinetic Ising
model with arbitrary couplings. First we distinguished between the variational and field
theoretical approaches to the Naïve mean field theory for a generic Markov chain and pointed
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out that the two do not coincide unless the transfer function is logistic, as is the case for the
kinetic Ising model and there are no self-interactions in the system. (For an overview of the
approaches to Naïve mean field theory for the equilibrium case see [16].) For the specific case
of the kinetic Ising model with discrete time parallel updates, we then proposed two
approximations based on generating functional integral technique: the gaussian average
Variational method and the extended Plefka expansion. In the gaussian average variational
method we expand the generating functional of the process to first order around a high
dimensional complex gaussian integral and optimize the resulting expression. An uncon-
strained optimization of the parameters of this gaussian function, in which we assume no
structure for the covariance matrix, provides equations of motion which, as our numerical
analysis indicates, perform at the naive mean field level for small couplings while they get
close to RH-TAP equations [2] for larger couplings. On the other hand making suitable
assumptions on the covariance matrix, allows us to recover the MS-MF equations [1], known
to be exact for fully asymmetric connectivities in the thermodynamic limit.

Although we numerically compared the dynamics of magnetizations predicted from our
dynamical equations with those of simulating the system, we did not study the relaxation
dynamics that our dynamical equations predict for such systems analytically. Such an analysis
has been performed in the case of the p-spin spherical spin glass model in [10] where it is
shown that the long term dynamics of the dynamical TAP equations for this system can be
seen as descending through the free energy landscape. For symmetric couplings and constant
external fields, the synchronous update model that we have considered here in the long time
will equilibrate to a Boltzmann distribution determined by the Peretto’s Hamiltonian [27].
The replica analysis for this model has not been performed and, therefore, we cannot make
any statements as to what degree our extended Plefka and variational equations will be in
agreement with such analysis. However, we would like to note that for the asynchronous
update Glauber dynamics, once stationary magnetizations are assumed, the RH-TAP
equations will coincide with the standard static TAP equations [28]. As noted before the
equations derived here using the extended Plefka expansion are generalization of the RH-TAP
equations [2] and reduce to those if correlations and response functions are not taken into
account. Static TAP equations—which can be derived as the stationary limit of RH-TAP
equations—in turn, describe the multitude of local minima observed in the low temperature
phase of the SK model, and whose consistency with the replica approach has been formally
established [29]. The situation regarding the variational method is less clear, for one reason
because, besides that little is known of the low temperature properties of the Peretto’s
Hamiltonian [30], the resulting dynamical equations can change with the ansatz chosen for
the covariance matrix of the fields and conjugate fields. If no ansatz is assumed, our numerical
results show that at low temperatures (strong couplings), the error in predicting the magne-
tizations approaches those of the RH-TAP equations, which as stated before lead to static
TAP equations in the stationary state. We will leave it to future studies to explore this
similarity and the relaxation dynamics predicted by the variational approach in more detail
and analytically.

In the extended Plefka approach, by expanding the log generating functional in the
coupling strength, while fixing first and second order moments over time, we approximate the
true interacting dynamics by an effective single site dynamics. Namely, within the approxi-
mated description, each spin is subjected to an effective local field (55) that contains a
retarded interaction with its own past values and a coloured gaussian noise. The main dif-
ference with other mean field techniques is that the whole history of the single spin trajectory
is taken into account in the equation for local order parameters. Numerical simulations show
that considering this term leads to greater accuracy in predicting local magnetizations for all
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values of couplings strength, coupling asymmetry and different choices of external fields. We
find that this memory term is stronger for larger degree of symmetry of the network, and
negligible when the couplings are uncorrelated: in this case the MS-MF approximation is
retrieved.

The methods proposed in this paper are quite general in their scope and in theory can be
used for studying the dynamics of other kinetic models. In particular, we find it interesting to
see how these approximations perform for point process models from the generalized linear
model family, from which the kinetic Ising model is just one simple example. Furthermore,
these methods can also be applied for inverse problems: inferring the interactions and fields
given spin trajectories [31]. In particular, given the fact that inference and learning in the
presence of hidden nodes can be casted in a functional integral language [32], our methods
can naturally lend themselves to developing novel approximations in this case for point
processes. In fact, very recently, the extended Plefka approach has been used for learning and
inference of the continuous variables in the presence of hidden nodes [33].
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Appendix A. Determinant of S

As was mentioned in section 4.1 of the main text, in this appendix we demonstrate that the
determinant of the matrix S that appears in (37) and (38) equals one. We are going to prove it
irrespectively to the specific details of matrices g andl in (38). Consider a complex matrix S
with the block structure defined in (37), where l +t t, 1( ) and g t( ) are generic complex
square matrices of order N.

In order to compute its determinant partition the matrix S as follows:

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥
=






     

S

S S
S S S

S S S
S S S

0, 0 0, 1 0 0 0
1, 0 1, 1 1, 2 0 0
0 2, 1 2, 2 2, 3 0
0 0 3, 2 3, 3 3, 4

. A.1

( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( )

The determinant of this partitioned matrix can be formulated in terms of its blocks
through the properties of Shur complements. Indeed for a generic matrix M:

⎡
⎣⎢

⎤
⎦⎥= = - -M A B

C D
M A D CA Bdet det det . A.21[ ] ( )

Since the square matrix S 0, 0( ) is invertible, as can be easily checked in (38) and (A.2)
can be used to express the determinant of S as:
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⎡

⎣

⎢⎢⎢⎢⎢

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎤

⎦

⎥⎥⎥⎥⎥
= - -

  

S S S
S

S Sdet det 0, 0 det
1, 0
0 0,0 1, 0 0 ... , A.3

S

0 1

0

( )( )
( )

( ) ( ) ( )⧹

˜⧹

where we have denoted with S 0⧹ the bottom right matrix in the partition (A.1).
Notice that second term in S 0˜⧹ —the Shur complement of S 0, 0( )—has the form:

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
=

-








     

S
S S

S

1, 0
0 0,0 1, 0 0 ...

1, 1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

A.4

1( )( )
( ) ( )

ˆ ( )
( )

with

⎡
⎣⎢

⎤
⎦⎥


 r r l g l= -

-
=S 1, 1

0 i
i 1

, 1 0,1 0 0, 1 A.5ˆ ( ) ( ) ( ) ( ) ( ) ( ) ( )

such that the matrix S 0˜⧹ in (A.3) turns out having the same block form as S 0⧹ ,

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥
=






     

S

S S
S S S

S S S
S S S

1, 1 1, 2 0 0 0
2, 1 2, 2 2, 3 0 0
0 3, 2 3, 3 3, 4 0
0 0 4, 3 4, 4 4, 5

, A.60˜
˜ ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( )⧹

⎡
⎣⎢

⎤
⎦⎥


 g=
-

-t t
t

S ,
0 i
i

A.7˜ ( ) ˜ ( ) ( )

and

g g l g l= - - - -t t t t t t t1, 1 1, . A.8˜ ( ) ( ) ( ) ˜ ( ) ( ) ( )

As a consequence S 0˜⧹ is a block tridiagonal matrix, just like S, and in order to compute
its determinant one can apply (A.3) again, to express Sdet 0˜⧹ as a function of the determinant
of S 1, 1˜ ( ). By repeatedly applying (A.3) to the Shur complements S t˜⧹ of t tS ,˜ ( ), one shows
that the determinant of S can be factorized into determinants of t tS ,˜ ( ) s. As proven for t=0
these matrices t tS ,˜ ( ) preserve the structure of t tS ,( ) and therefore their determinants are 1.
Finally:

= =t tS Sdet det , 1. A.9
t

˜ ( ) ( )
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Appendix B. Inverse of S

In sections 4.2 and 4.4 we relate the optimal values of the variationl parameters and
the magnetizations to the elements of the covariance matrix -S 1 in the framework of
the gaussian average method. In this appendix we derive expressions for these elements,
namely the correlations between field and conjugate fields =+ +

-
¢g tS Nt i Nt i i L2 ,2

1 2
s

⟨ ( ) ⟩ ,

=+ + + +
-

¢g t g tS Nt N i Nt N j i j L2 ,2
1

s
⟨ ˆ ( ) ˆ ( )⟩ and = ++ + + +

-
¢g t g tS 1Nt i N t N j i j L2 ,2 1

1
s

⟨ ( ) ˆ ( )⟩( ) —where ¼ ¢Ls⟨ ⟩
indicates averages under the gaussian measure - ¢e Ls , with  ¢ =L Ss

1

2
.

Variance 〈gi ðt Þ2〉L′s
Here we close the set of equation (41) for the magnetizations with equations for the variances

+ +
-S Nt i Nt i2 ,2
1 in terms of the interaction matrix S, whose entries are linked to the magnetizations

through (37)–(39b).
Recall that the inverse of the non-singular matrix S can be computed as [34]

=
--

+

S
S

S

1 det

det
, B.1ij

i j
ji1 ( ) ([ ] )

( ) ( )

where S ji[ ] is the ji minor of the matrix S, obtained removing the jth row and the ith column
from the matrix itself. In case of the matrix defined by (37), whose determinant equals 1, the
problem of inverting the matrix corresponds to computing the determinant of these minors.
We now aim to calculate the determinant of + +S Nt i Nt i2 ,2[ ] following the derivation of the
determinant of S.

As in appendix A, we start with factorizing out the determinant of the diagonal blocks
¢ ¢t tS ,( ) up to - -t tS 1, 1( ), according to (A.3). Given that these all equal 1, we can rewrite

the determinant of + +S Nt i Nt i2 ,2[ ] as:

=+ + I i tSdet det , , B.2Nt i Nt i2 ,2([ ] ) ( ( )) ( )

where

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟º -

-
- - -- -


I i t

t t
t t t tS

S
S S,

, 1

0 1, 1 1, 0 ... B.3t
ii

i
i1 1( )( ) [ ]

[ ( )]
˜ ( ) [ ( )] ( )⧹

⧹
⧹

and we have defined t tS ,˜ ( ) in (A.8). -t tS , 1 i[ ( )]⧹ and -t tS , 1 i[ ( )]⧹ have been obtained
removing respectively the ith row and the ith column from -t tS , 1( ). -S t

ii
1[ ]⧹ is instead the

ii minor of -S t 1⧹ defined analogously as S 0⧹ in appendix A:

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥
=

+
+ + + + +

+ + + + + +
+ + + +

-






    

t t t t
t t t t t t

t t t t t t
t t t t

S

S S
S S S

S S S
S S

, , 1 0 0
1, 1, 1 1, 2 0

0 2, 1 2, 2 2, 3
0 0 3, 2 3, 3

. B.4t 1

( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( )

( )⧹
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One can easily see that I i t,( ) in (B.2) preserves the block form of -S t
ii

1[ ]⧹ , namely

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
=

+

+



I i t

t t t t

t t

S S

S

S

,

, , 1 0 0 0

1,

0...

B.5

ii i

i

t

( )
[ ˜ ( )] [ ( )]

[ ( )] ( )
⧹

⧹
⧹

and therefore one can apply the formula in (A.3) once more to factorize the determinant in
(B.2) into a product of two determinants as follows:

= ++ + t t I i tS Sdet det , det , 1 , B.6Nt i Nt i ii2 ,2([ ] ) ([ ˜ ( )] ) ( ( )) ( )
where +I i t, 1( ) has been defined in (B.3).

With a bit of algebra it is possible to show that the matrix +I i t, 1( ) in (B.6), has the
very same structure as S t⧹ and consequently of S. Thus the second factor in the above
equation is 1 (appendix A) and what’s left is to compute the determinant of the ii minor of the
matrix t tS ,˜ ( ).

Given the structure of t tS , ii[ ˜ ( )]
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥



 g
º

-

-
t t

t
S ,

0 i

i
, B.7ii

i

i
[ ˜ ( )] ˜ ( ) ( )⧹

⧹

where g t˜ ( ) has been defined in (A.8), its determinant reduces to:

 g g

g g
g

= -

= -
=

- -

- -

t t t t

t t
t

Sdet , 1 det det i i

1 det det
. B.8

ii
N

i
i

N
ii

ii

1 1

2 2 1

([ ˜ ( )] ) ( ) ( ˜ ( )) ( ˜ ( ) )
( ) ( ˜ ( )) ([ ˜ ( ) ] )
˜ ( ) ( )

⧹ ⧹

Finally we will check that the diagonal elements of -S 1 we’ve just obtained are well
defined variances by proving that they can take only positive values. In order to do that we
will show that the matrix g t˜ ( ) is positive definite.

By substituting g andl, using respectively (39a) and (39b), in (43) one can express g t˜ ( )
in terms of g -t 1˜ ( ), the matrix of the couplings J and the matrix dº -M t m t1ij ij i

2( ) ( ( ) )
(m are the magnetizations) as

 g g= + -t t t t t tJM JM JM M J1 . B.92 2˜ ( ) ( ( ))( ( )) ( ) ˜ ( ) ( ) ( )

The first matrix on the right-hand side of (B.9) is positive definite. Since the sum of two
positive definite matrices is positive definite, it is left to show that the second term on the
right-hand side of (B.9) is positive definite. We will prove it by induction. First of all given
that g g=0 0˜ ( ) ( ), from the definition of g in (39a), we know that g 0˜ ( ) is positive definite.
Then we assume that g -t 1˜ ( ) is positive definite and we prove that g -t t tJM M J12 2( ) ˜ ( ) ( )
is positive definite. If g -t 1˜ ( ) is positive definite, it exist a matrix A such that

g - =t AA1˜ ( ) . Exploiting the latter one can rewrite:

 g - =t t t t A t AJM M J JM JM1 B.102 2 2 2( ) ˜ ( ) ( ) ( ( ) )( ( ) ) ( )
proving that the second term on the right-hand side of (B.9) is positive definite. Consequently
g t˜ ( ) is a positive definite matrix and its diagonal entries take only positive values.
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Correlations 〈 bg i ðt Þbg j ðt Þ〉L′s
Here we will prove that the two point correlation function between conjugate fields

+ + + +
-S Nt N i Nt N j2 ,2
1 is zero, as claimed in 4.4, where it enters the proof of consistency of the

optimal parameter h = 0ˆ .
Similarly to the previous subsection we will use (B.1) to invert the matrix S and compute

the determinant of the minor through Shur’s complement formula (A.2):

=
-

= -

+ + + +
-

+ + +
+ + + +

+ Y i j t

S
S

S

1 det

det

1 det , , B.11

Nt N i Nt N j

Nt N i j
Nt N i Nt N j

i j

2 ,2
1

4 2
2 ,2( ) ([ ] )

( )
( ) ( ( )) ( )

with

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟= -

-

´ - - -

-
+ +

+

- +


Y i j t

t t

t t t t

S
S

S S

, ,
, 1

0

1, 1 1, 0 ... B.12

t
N i N j

N i

N j

1
,

1( )
( ) [ ]

[ ( )]

˜ ( ) [ ( )] ( )

⧹
⧹

⧹

and we have defined t tS ,˜ ( ) in (A.7) and -S t 1⧹ in (B.4). Y i j t, ,( ) in (B.12) preserves the
block form of -

+ +S t
N i N j

1
,[ ]⧹ , namely

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
=

+

+

+ + +

+



Y i j t

t t t t

t t

S S

S

S

, ,

, , 1 0 0 0

1,

0...

. B.13

N i N j N i

N j

t

,

( )
[ ˜ ( )] [ ( )]
[ ( )] ( )

⧹
⧹

⧹

Conversely to the previous section we cannot express the determinant of Y i j t, ,( ) in
terms of the Shur’s complement of + +t tS , N i N j,[ ˜ ( )] , since the latter is a singular matrix. One
has instead to resort to the Shur’s complement of the matrix S t⧹ that we know is invertible and
its determinant is 1, having the same structure of the matrix S (appendix A):

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎞

⎠
⎟⎟

=

- +
+

+ +

+ -

+



Y i j t t t

t t
t t

S S

S S
S

det , , det det ,

, 1 0 ...
1,
0 . B.14

t
N i N j

N i
t

N j

,

1( )
( ) ([ ˜ ( )]

[ ( )] [ ]
[ ( )]

( )

⧹

⧹ ⧹
⧹

Just like + +t tS , N i N j,[ ˜ ( )] , the matrix whose determinant is the second factor on the right-
hand side of (B.14) is singular: as can be easily checked its ith column is null, regardless of
the elements of -S t 1[ ]⧹ . This completes the proof that =+ + + +S 0Nt N i Nt N j2 ,2 for all

= ¼i j N, 1, , and = ¼ -t T0, , 1.

Correlations 〈gi ðt Þbg j ðt+1Þ〉L′s
Here we will prove that the two point correlation function between conjugate fields

=+ + + +
-S 0Nt i N t N j2 ,2 1
1 ( ) is zero, as claimed in 4.4, where it enters the proof of consistency

of the optimal parameter h = 0ˆ . The derivation is very similar to the one for
=+ + + +

-S 0Nt N i Nt N j2 ,2
1 in the previous subsection.
We will use (B.1) to invert the matrix S and compute the determinant of the minor

through Shur’s complement formula (A.2):
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=
-

= -

+ + + +
-

+ + +
+ + + +

+ + Z i j t

S
S

S

1 det

det

1 det , , B.15

Nt i N t N j

Nt N i j
Nt i N t N j

N i j

2 ,2 1
1

4 3
2 ,2 1

3

( ) ([ ] )
( )

( ) ( ( )) ( )
( )

( )

with

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟º -

-

´ - - -

-
+

- +


Z i j t

t t

t t t t

S
S

S S

, ,
, 1

0

1, 1 1, 0 ... B.16

t
i N j

i

N j

1
,3

1( )
( ) [ ]

[ ( )]

˜ ( ) [ ( )] ( )

⧹
⧹

⧹

and we have defined t tS ,˜ ( ) in (A.8) and -S t 1⧹ in (B.4). Z i j t, ,( ) in (B.16) preserves the
block form of -

+S t
i N j

1
,3[ ]⧹ , namely

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥
=

+

+ + + + +
+ +

+

+

+




Z i j t

t t t t

t t t t t t
t t

S S

S S S
S

S

, ,

, , 1 0 0

1, 1, 1 1, 2 0
0 2, 1

... 0...

. B.17

i i N j

N j

t

,

1

( )
[ ˜ ( )] [ ( )]
( ) ( ) ( )

( ) ( )
⧹

⧹

⧹

Analogously to the previous section we will now express the determinant of Z i j t, ,( )
using the Shur’s complement of the matrix +S t 1⧹ that we know is invertible and its deter-
minant is 1, just like the matrix S, as shown in appendix A:

⎜ ⎟

⎛
⎝
⎜⎜

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

=
+

+ + +

-
+ +

+ +

+ +

+

+ -


Z i j t
t t t t

t t t t

t t

t t

S
S S

S S

S
S

S

det , , det det
, , 1

1, 1, 1

0 0
1, 2 0

0 2, 1
0 0... ...

. B.18

t i i N j

N j

t

1 ,

1 1

( ) [ ˜ ( )] [ ( )]
( ) ( )

( ) [ ] ( ) ( )

⧹ ⧹
⧹

⧹

The structure of + -S t 1 1[ ]⧹ reflects -S 1 structure:

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥
=

W + + W + + W + +
W + + W + +
W + +

+ -


 

  
   

t t t t t t
t t t t
t t

S

2, 2 2, 3 2, 3
3, 2 1, 1
4, 2

B.19t 1 1[ ]
( ) ( ) ( )
( ) ( )
( ) ( )⧹

with

⎡
⎣⎢

⎤
⎦⎥

gW + + = + D
G

t t
t2, 2 2

0
, B.20( ) ˜( ) ( )

where Δ and Γ are matrices of order N2 . The block form of W + +t t2, 2( ) follows that of
the diagonal blocks of -S 1, that was proven to be such in the previous sections of this
appendix.

Using (B.19) one can check that the matrix whose determinant is the second factor on the
right-hand side of (B.18) is singular: its (N+j)-th row is null. This completes the proof that

=+ + + +
-S 0Nt i N t N j2 ,2 1
1 ( ) for all = ¼i j N, 1, , and = ¼ -t T0, , 1.
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Appendix C. Gaussian average method: variance

In this appendix we study the stability of the dynamical system for the matrix g̃ defined in the
main text by (43). In order to do that we first average (43) over the distribution of the
couplings introduced in section 6 through (60) and (61). Consider then entries of g 1˜ ( ):

g g

g g

= + =

= + =

g g k

g g k

1 1 0 for 0

1 2 1 8 0 for 1, C.1

ij lm

ij lm

2 2

2 2

˜ ( ) ( ˜ ( ))
˜ ( ) ( ˜ ( )) ( )

Figure C1. The mean variance in the gaussian integral for the magnetizations versus
time of reconstruction, when the experimental history of magnetization is known.
Green: the gaussian average method; blue: the variance in [1]. N=20, single
realization of the couplings with g = 0.4 (A), g = 0.6 (B), g = 0.9 (C) and g = 1.1 (D).
The experimental magnetizations are computed using 104 samples of the dynamics.
Zero external field. Top: asymmetry parameter k=0. Bottom: asymmetry para-
meter k=1.
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where the overbar indicates the average over the disorder, k is the parameter controlling the
asymmetry of the couplings, while g is the coupling strength. Notice the different factors in
(C.1) due to the correlations between the couplings. If we consider the univariate analogous to
(C.1):

= + - =
= + - =

x t g g x t k

x t g g x t k

1 1 for 0

2 1 8 1 for 1 C.2

2 2

2 2

( ) ( ( ))
( ) ( ( )) ( )

one can easily check that this dynamical system is characterized by a critical value for g, g0
that discriminates between different stability classes for the system. Below g0 x in (C.2)
converges to a finite value, while it grows exponentially in time for >g g0. The critical value
for this chaotic behavior is respectively =g 10 for fully asymmetric couplings (k= 1) and

< <g0.7 0.80 for fully symmetric ones (k= 0).
We got numerical evidence to support our intuition. We found that the variance in the

gaussian average method undergoes a chaotic behavior when the couplings strength reaches a
certain critical value, ~g 0.50 for symmetric connectivities and ~g 10 for fully asymmetric
ones. This value depends on the degree of symmetry of the couplings, on the presence of the
external field and there are small fluctuation across different realizations of the couplings, but
the phenomenon is qualitatively conserved. Figure C1 shows single realizations of the
couplings below and above critical values and compares the mean of the gaussian average
variances gå t

N i ii
1 ˜ ( ) with the mean of the MS-MF variances (mean of g tii ( ) (39a) in our

notation) in the gaussian integral for fully asymmetric couplings [1].

Appendix D. Details on the extended Plefka expansion

We rewrite the functional Ga (51) as

 ò pG = X - -a a NT Nm m C B R sln d Tr exp , , , , , , ln 2 ln 2, D.1s ( [ ˆ ]) ( )

where
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C t t s t s t C t t B t t g t g t B t t

R t t g t s t R t t
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and proceed with the perturbation expansion of Ga around a = 0 up to the second order:

a
a

G = G + G + Ga
2

, D.30 1
2

2 ( )( ) ( ) ( )

where aG = ¶ G ¶a a=
k k k

0∣( ) . At the end of the calculation we will set a = 1. The first term in
the expansion is given by
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and y h C B R, , , ,0 0 0 0 0ˆ ˆ ˆ are the fields for which the set of equations (52) is satisfied for
G = Ga

0( ) for a given value of m m C B R, , , ,ˆ . We compute G 1( ) as follows:

a a
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When computing the average a¶X ¶a a⟨ ⟩ as defined in (50), all the terms on the right-hand
side of (D.7) except for the first one vanish because of the set of equations (49). Moreover at
α=0 the spins are decoupled and the averages are trivial:

å åG = - = -J g t s t J m t m ti i . D.8
ijt

ij i j
ijt

ij i j
1

0⟨ ˆ ( ) ( )⟩ ˆ ( ) ( ) ( )( )

For the second derivative of Ga with respect to α we have
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Using (D.7) and the set of equations (49), it is easy to show that the first term on the right-
hand side of the above equation is zero. One thus finds

⎛
⎝⎜

⎞
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which can be computed using (D.7) and the following Maxwell equations:
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Note that the derivatives of the two-time conjugate fields with respect to α are zero, e.g.
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We finally obtain

å d d d dG = - ¢ ¢
¢ ¢ ¢

¢ ¢ ¢ ¢g t J s t g t J s t , D.13
iji j tt

i ij j i i j j
2

0⟨ ˆ ( ) ( ) ˆ ( ) ( )⟩ ( )( )

where we defined d = -s t s t m ti i i( ) ( ) ( ) and d = -g t g t m ti i iˆ ( ) ˆ ( ) ˆ ( ). Since the averages are
taken at a = 0 spins at different sites are decoupled and the only non-vanishing terms in
(D.13) correspond to the case ¢ = ¢ =i i j j, and ¢ = ¢ =i j j i, :
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which can be written in terms of the moments as follows

åG =- ¢ - ¢ ¢ - ¢

+ ¢ - ¢ ¢ - ¢
¢
J B t t m t m t C t t m t m t

J J R t t m t m t R t t m t m t

, ,

i , i , . D.15
ijtt

ij i i i j j j

ij ji i i i j j j

2 2[ ( ( ) ˆ ( ) ˆ ( ))( ( ) ( ) ( ))
( ( ) ˆ ( ) ( ))( ( ) ˆ ( ) ( ))] ( )

( )

Inserting (D.4), (D.8) and (D.15) in (D.3) we find the explicit expression of the functional
Ga expanded up to the second order. Considering the set of equations (52) within the second
order expansion and setting the auxiliary fields to zero, we can extract the value of the fields
y h C B R, , , ,0 0 0 0 0ˆ ˆ ˆ as functions of the correct (within the expansion) marginal first and
second moments:

å å

å

å

y =

= + - ¢ ¢

¢ =

¢ =- ¢ - ¢

¢ = ¢

¢

t

h t h t J m t J J R t t m t

C t t

B t t J C t t m t m t

R t t J J R t t

0

,

, 0

, ,

, , . D.16

i

i i
j

ij j
jt

ij ji j i

i

i
j

ji j j j

i
j

ij ji j

0

0

0

0 2

0

( )
( ) ( ) ( ) ( ) ( )

ˆ ( )
ˆ ( ) ( ( ) ( ) ( ))

ˆ ( ) ( ) ( )

From general results for generating functional analysis of spin systems [14] it can be shown
that =m 0ˆ , B=0 and ¢R t t,( ) has the meaning of a local response function and is non-
vanishing only for > ¢t t . To get an explicit expression for Z0 we insert (D.16) in (D.5). It
yields = Z h Z hi i

0 0[ ] [ ], where
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To linearize the quadratic terms in (D.17), we introduce the gaussian random variables f ti ( ),
independently for each i, with zero mean and covariance
f f ¢ = å ¢ - ¢t t J C t t m t m t,i i j ij j j j
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From the above equation one can see that the moment ¢R t t,i ( ) defined in (49) can be written
as an average over the fields f ti ( ) as follows
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and can be interpreted as a response function.

Appendix E. The Yule–Walker equations

We want to generate the gaussian random field f ti
k ( ) for given trajectory k and spin i based on

the past values of the field f f f -t0 , 1 ... 1i
k

i
k

i
k( ) ( ) ( ). Since the random variables

f f f t0 , 1 ...i
k

i
k

i
k( ) ( ) ( ) are jointly gaussian distributed with zero mean, we know that the

conditional expectation f f f f fº - t E t t0 , 1 ... 1i
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i
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i
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i
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i
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which also happens to be the best mean square estimate of f ti
k ( ) given f = -r r t, 0 ... 1i

k ( ) .
The coefficients -a a a t0 , 1 ,... 1( ) ( ) ( ) are such that the mean square value of the estimation

error f f- E t ti
k

i

k 2{[ ( ) ( )] } is minimum. By the orthogonality principle, this condition holds
if the following set of equations is satisfied
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which can be rewritten in matrix form as

 =A , E.3t ( )
where = -a a tA 0 ... 1[ ( ) ( )] is the vector of coefficients,  is the correlation matrix with
elements  f f¢ = ¢r r E r r, i

k
i
k( ) { ( ) ( )} for ¢ = -r r t, 0 ... 1 and t is the vector with elements
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 f f=r E t rt i
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k( ) { ( ) ( )} for = -r t0 ... 1. Since f f f- ^t t ri

k
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Knowing that f f ¢ = å ¢ - ¢ ¢ =E r r J C r r m r m r r r t, , 0 ...i
k

i
k

j ij j j j
2{ ( ) ( )} [ ( ) ( ) ( )] , we can

compute the coefficients a(r) from (E.3) and draw the gaussian random variable f ti
k ( ) with

mean and covariance given, respectively, by (E.1) and (E.4).
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3.3 Discussion

3.3 Discussion

In this section, we present additional comparisons between different algorithms
aimed at predicting single site magnetizations. The analysis of Paper 1 reveals
that a novel approximation denoted as the Extended Plefka Expansion out-
performs other existing methods, at the cost of keeping memory of the spin
fluctuations at all past times. The required Monte Carlo algorithm can be
speeded up from T 2N + TNNT to T 2 + TNNT computational time steps,
where N is the size of the system, T the number of time steps and NT the
number of Monte Carlo trajectories. If the couplings Jij have variance ∼ 1/N ,
we expect local two-times moments to be self-averaging. Hence, we can rewrite
the effective single site field of equation (55) as

gi(t) = φi(t) +
∑

j

(Jijmj(t)

−g2 1− k2

1 + k2

1

N

t−1∑

t′=0

∑

j

Rj(t, t
′)[si(t

′)−mi(t
′)]

)
+ hi(t).

(3.1)

and the covariance of the Gaussian noise of equation (54) becomes

〈φi(t)φi(t′)〉 =
g2

N

∑

j

[Cj(t, t
′)−mj(t)mj(t

′)]. (3.2)

The new version of the algorithm is written in Appendix 3.C. Figure 3.1 shows
that - for networks of 50 spins- the accuracy of the prediction on the magne-
tization is reduced if we replace the local second order moments with their
average value, especially for small couplings. However, the scaling of the mean
squared error with the system size (Figure 3.2) suggests that the two algo-
rithms perform equally well for very large networks: in both implementations
of the extended Plefka method, error of the predicted magnetization goes to
zero in the limit N →∞.

As a final comparison, we investigate the performance of the Extended Gaus-
sian approximation of [MS14] (see section 3.B) and plot its error in Figure 3.1,
in case of a symmetric network. We recall that, for completely asymmetric
networks, this method agrees with the exact mean field theory of [MS11]. One
observes that, for very small couplings (high temeratures), all the methods
approach each other. For quite large values of the couplings (corresponding
to values of g greater than g ≈ 1.5), the extended Gaussian approximation
performs equally well as the extended Plefka algorithm. To be more precise,
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3 Dynamics on random networks

the extended Gaussian method outperforms the extended Plefka approxima-
tion for N = 50; however, we observe that the result of the extended Plefka
method decreases for increasing N , contrary to the extended Gaussian method
(Figure 3.2). There are intermediate values of the strength of the couplings
(approximately corresponding to values 0.2 < g < 1.5 ) for which the per-
formance of the extended Gaussian approximation is poorer that both the
Extended Plefka and the RH-TAP, where the latter method does not consider
the effect of correlations and responses.

3.4 Conclusions

We have presented several approximate methods to study the transient dy-
namics of an Ising model with the parallel update Glauber rule, deriving
equations for the time evolution of single-spin magnetisations for fixed val-
ues of the quenched couplings. We considered system with couplings that are
weak, long-ranged and are allowed to have any degree of symmetry. While a
lot of efforts have been devoted to the study of the dynamics of spin glasses
with symmetric couplings (for a review see [BCKM98] ), comparatively less
attention has been devoted to networks with asymmetric couplings - for which
an energy function cannot be defined. In the fully asymmetric case, correla-
tions between spins at various times are negligible, and the fields acting on
each spin can be simply described in terms of effective Gaussian fields [MS11]
. However, if the couplings have a non-zero degree of symmetry, these corre-
lations persist also at distant times, and studying the dynamics is less trivial.
In this chapter, we introduced a novel approaches to this task, denoted as the
extended Plefka expansion. It is based on a weak coupling expansion of the
log-generating functional, where the local moments over time are constrained
via a Legendre transform. The novelty of our formalism relies in including not
only the first-order marginal moments, but also all the second-order marginal
moments; the latter quantities are trivial for the equilibrium Ising model (since
σ2 = 1) but are non-negligible in the dynamic case for a correct mean-field de-
scription of the system. The result is an effective log-generating functional that
factorizes over single-site trajectories and contains the correct first and second
order moments within the approximation. Namely, within the approximate
description, each spin is subjected to an effective local field which contains
Gaussian noise - encoding the effect of correlations with past spin values - and
a memory term where the response function is coupled to the whole history
of spin fluctuations. The contribution of the memory term is stronger for
larger degree of symmetry of the network, and negligible when the couplings
are uncorrelated, in which case the exact mean field theory is retrieved. The
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3.4 Conclusions
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g

0.0001
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1
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Figure 3.1: Mean squared error of the predicted magnetization averaged over
spins and time: ε = 〈mi(t)

experimental − mi(t)
predicted〉, where the

’experimental’ magnetization is the one we get from simulating
the exact dynamics by using 50000 Monte Carlo repeats. The
mean squared error is plotted as a function of the parameter g -
representing the strength of the couplings- for a system of N = 50
spins with fully symmetric couplings. We have used 100 time steps
and have averaged the errors over 10 realizations of the couplings.
The error bars are standard deviations over these realizations. Dif-
ferent colors correspond to different methods to predict the magne-
tizations, some of them referring to Paper 1: RH-TAP (green), MS-
MF (red), extended Gaussian average (light blue), extended Ple-
fka (violet) and extended Plefka with averaged moments (black).
The number of sample trajectories used in the algorithm for both
the extended Plefka and extended Plefka with averaged moments
methods is NT = 50000.
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Figure 3.2: Mean squared error of the Extended Plefka method with averaged
moments (black), Extended Gaussian approximation (blue) and
Extended Plefka method of Paper 1 (magenta) for predicting entire
dynamics of magnetizations. The mean squared error is computed
for a fully symmetric network with fixed coupling strength g = 1,
and plotted as a function of the system size N . We have used 100
time steps and 50,000 repeats to calculate the experimental mag-
netizations and have averaged the errors over 10 realizations of the
couplings. The error bars are standard deviations over these real-
izations. The number of sample trajectories used in the algorithm
for the algorithms based on the Extended Plefka approximation is
NT = 50000. Stationary external field drawn independently for
each spin from a normal distribution (zero mean, standard devia-
tion 0.5). The Extended Gaussian method shows no scaling with
N, a behaviour that we also observed at g = 0.5 and g = 3. For
the error of the two algorithms based on the Extended Plefka ap-
proximation, we fitted a shifted power law to the data, to infer
the value of the asymptotic error for large networks. The fit seems
to indicate that the mean squared error goes to zero in the limit
N → ∞ in both cases, with exponent 1.8 ± 0.2 for the Extended
Plefka method and 0.89 ± 0.15 for the algorithm with averaged
moments.
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complex local fields require a Monte Carlo simulation to be computed, which
makes the method numerically complex. A less complex version of the Monte
Carlo algorithm, where the second-order moments are replaced by their self-
averaging value, performs equally well only for very large systems. The result
outperforms the other methods in predicting the single site magnetization,
and the mean squared error of the predicted magnetization goes to zero with
increasing system size as a power low. This result, together with the retrieval
of the exact equations for the fully asymmetric case, seems to indicate that
the approximation should become exact in the thermodynamic limit of a large
network. A yardstick for comparison can be the results of [EO94], where the
transient zero-temperature dynamics of an Ising model with arbitrary degree
of symmetry was derived for the disordered average system. Our equation for
the magnetisation shows strong analogies with their result; as a next step, we
intend to perform the proper comparison by averaging our mean-field solution
over the quenched couplings. The complexity of performing this average lies
in the nonlinear dependence of the magnetisations on both the couplings and
the magnetisations at previous times, which in turn depend on the couplings.
We expect that the computation could be treated using the replica trick.

The mean-field equations that we discussed in this chapter can be also used
as inference tools to compute the value of the couplings from data. A future
direction of the present work consists in designing a mean-field estimator for
the couplings starting from the extended Plefka expansion; for example, one
could extend the approach of [MS11, MS14], where a relation between equal
times and one-time delayed correlation matrices is derived, and then inverted
to compute the couplings from correlations observed from data.

Along with developing more accurate mean-field inference techniques, we
find it important to assess the quality of mean-field estimators against other
types of estimators. In the next chapter, we carry out such analysis for fully
asymmetric networks, for which the exact mean-field equations are known.
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Appendix

3.A TAP equations for the SK model

The TAP equations were derived by Thouless Anderson and Palmer [TAP77]
in 1977 and provided the mean field solution to the Sherrington-Kirkpatrick
(SK) model of spin glasses [SK75].

H(σ) = −
∑

i<j

Jijσiσj −
∑

i

hexi σi, (3.3)

where the couplings Jij are independent Gaussian random variables with zero
mean and variance J0/N , and hexi are external local fields. The TAP equations
consists in a set of mean field equations for the local magnetization, valid for
a given realization of the random couplings Jij:

mi = tanh(βh̃i) +O(1/N) (3.4)

where

h̃i =hexi +
∑

j

Jij

(
mj −mi

∑

j

Jijχjj

)
(3.5)

=hexi +
∑

j

Jijmj −mi

∑

j

J2
ijβ(1−m2

j). (3.6)

The last equality follows from the definition of the susceptibility χjj, which
represents the reaction of the magnetization mj to a small change of the field
h̃j:

χjj =
∂mj

∂h̃k
= β(1−m2

k). (3.7)

In the following two sections, we present two methods to derive these equations.

3.A.1 The cavity approach

The TAP equations for the local magnetizations mi = 〈σi〉 of the SK model
can be derived from the cavity [MPV87] method ( see [OS01,Nis01,OW01a]).
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3 Dynamics on random networks

We start by deriving an set of approximate equations for the single site
marginal distribution of spins Pi(σi). The key observation is that the single
spin σi depends on the other spins through the local fields hi =

∑
j Jijσj, and

that the joint distribution of σi and hi is

P (σi, hi) ∝ eβσi(hi+h
ex
i )P (hi\σi). (3.8)

P (hi\σi) is the distribution of the local field hi in an auxiliary system of N−1
spins, where the spin σi has been removed by setting Jij = 0 for j 6= i. It is
called the cavity distribution, and can be explicitly written as

P (hi\σi) ≡
∑

σ\σi

δ(hi −
∑

j

Jijσj)P (σ\σi), (3.9)

where P (σ\σi) is the distribution of the spin configuration in a system where
the spin σi has been removed. Hence, the marginal distribution of single spins
can be found once the cavity distribution of local field is specified:

Pi(σi) ∝
∫
dhie

βσi(hi+h
ex
i )P (hi\σi). (3.10)

Let us consider the distribution (3.9). The SK model is a fully connected
system, and the number of terms in the sum

∑
j Jijσj is N − 1. If all the

spins in the sum were independent and identically distributed, the central
limit theorem would tell us that the cavity distribution (3.9) is Gaussian. We
assume that this is the case for the SK model, where correlations of different
sites σj are weak4:

P (hi\σi) ≈
1√

2πVi
exp

(
−(hi − 〈hi〉\i)2

2Vi

)
, (3.11)

where 〈...〉\i denotes averages with respect to the cavity distribution. By in-
serting this Gaussian distribution in (3.10) one finds the following equation
for the single site magnetization

mi = tanh β〈hi〉\i. (3.12)

We now have to evaluate the expectations 〈hi〉\i and the variances Vi.
The definition of full expectation

〈hi〉 =
∑

σi

∫
dhi hiP (σi, hi), (3.13)
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3.A TAP equations for the SK model

together with (3.8) and the Gaussian cavity field (3.11) yields

〈hi〉 = 〈hi〉\i + Vi〈σi〉. (3.14)

The variance of the cavity field is defined as

Vi =
∑

ij

JijJik(〈σjσk〉\i − 〈σj〉\i〈σk〉\i). (3.15)

It can be shown [MPV87] that, in the above equation, only diagonal terms
j = k contribute to the sum; we do not prove the validity of this result, but
only mention that it is due to the independence of Jij and Jik (i 6= k) and to
the property called clustering

lim
N→∞

1

N2
(〈σjσk〉 − 〈σj〉〈σk〉) = 0, (3.16)

that was shown to be valid when the temperature is sufficiently high and there
is only one solution to (3.4-3.6). We finally get

Vi ≈
∑

j

J2
ij(1− 〈σj〉2\i) ≈

∑

j

J2
ij(1− 〈σj〉2) =

∑

j

J2
ij(1−m2

j), (3.17)

by assuming that the average in the original system and the average in the
auxiliary system where one spin has been removed are approximately the same.
From (3.12), (3.14) and (3.17) one gets the TAP equations (3.6).

3.A.2 Plefka’s expansion

Another method to derive TAP equations is the Plefka [Ple82] expansion. It
consists in a weak coupling expansion of the free energy at fixed magnetiza-
tions, which are constrained through a Lagrange transform (i.e., the Gibbs
potential):

−βGα(β,m) = Extrh

(
log Tre−βHα − β

∑

i

himi

)
, (3.18)

where

Hα = −α
∑

i<j

Jijσiσj −
∑

i

σi(h
ex
i + hi). (3.19)

4For a more detailed discussion of the validity of the mentioned approximation, see
[MPV87].
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3 Dynamics on random networks

the parameter α is introduced to control the strength of the couplings, α = 0
corresponding to the non-interacting system, while a α = 1 to the the SK
model. The auxiliary fields hi are Lagrange multipliers that enforce the con-
straint

mi = 〈σi〉α, (3.20)

where 〈...〉α is the expectation with respect to the Hamiltonian (3.19). These
auxiliary fields are to be considered as functions of the moments, according to
the following set of equations

hi[m] =
∂Gα

∂mi

, (3.21)

where we have used the condition (3.20). Note that when the auxiliary fields hi
are set to zero, the Gibbs free energy (3.18) is equivalent to the unconstrained
equilibrium free energy, so that the condition for the equilibrium magnetization
is

∂Gα

∂mi

= 0. (3.22)

The idea is to expand (3.18) in powers of α and set α = 1 at the end of the
calculations to recover the result for the SK model:

Gα = G0 +
∂G

∂α

∣∣∣∣
α=0

+
1

2

∂2G

∂α2

∣∣∣∣
α=0

α2 +O(α3). (3.23)

Let us compute it term by term. The Gibbs potential of the non-interacting
Ising system is computed to

βG0 =
∑

i

hexi mi+
1

2

∑

i

[(1+mi) log
1

2
(1+mi)+(1−mi) log

1

2
(1−mi)], (3.24)

while the first and second derivatives give, respectively,

∂G

∂α
= 〈H int〉α,

∂2G

∂α2
= −β

〈
H int

(
H int − 〈H int〉α −

∑

i

∂h

∂α
(σi −mi)

)〉

α

,
(3.25)

where H int = ∂H/∂α is the interacting part of the Hamiltonian. By evaluating
the above equations at α = 0 we find

∂G

∂α

∣∣∣∣
α=0

= −1

2

∑

i6=j
Jijmimj,

∂2G

∂α2

∣∣∣∣
α=0

= −1

2
β
∑

i6=j
J2
ij(1−m2

i )(1−m2
j),

(3.26)
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3.B Mean field approaches

where we have used the condition (3.20) and where the latter equation follows
from the relation:

∂hi
∂α

=
∂

∂mi

∂G

∂α

∣∣∣∣
α=0

= −
∑

j,j 6=i
Jijmj, (3.27)

which, in turn, follows from (3.21). Inserting (3.24) and (3.26) in (3.23) we
get the final equation for the Gibbs potential:

βGα(β,m) =
∑

i

hexi mi +
1

2

∑

i

[(1 +mi) log
1

2
(1 +mi) + (1−mi) log

1

2
(1−mi)]

− βα

2

∑

i6=j
Jijmimj −

(
βα

2

)2∑

i6=j
J2
ij(1−m2

i )(1−m2
j) +O(α3).

(3.28)

For α = 1, if terms O(α3) are neglected, the TAP equations for the mag-
netization are then recovered by extremization of (3.28) with respect to mi,
according to (3.22). In [Ple82], Plefka shows that these higher order terms in
(3.28) can be neglected in the N → ∞ limit, as long as the system is not in
the spin glass phase.

3.B Mean field approaches to the kinetic Ising
model: previous results

Let us now review the first generalization to dynamics of Plefka’s expansion,
as proposed in [RH11b]. We consider the kinetic Ising model introduced in
section 1.2, composed of N Ising spins si(t) interacting through couplings Jij
and with local external fields hi(t). It evolves in time according to a Glauber
dynamics with parallel update rule. The distribution of spin trajectories has
the following Markovian form

P(σ0:T ) =
T−1∏

t=0

P(σ(t+ 1)|σ(t))P (σ(0)) , (3.29)

where the transition probability is given by

P(σ(t+ 1)|σ(t)) =
N∏

i=1

exp σi(t+ 1)[hex
i (t) +

∑N
j=1 Jijσj(t)]

2 cosh[hex
i (t) +

∑N
j=1 Jijσj(t)]

. (3.30)
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3 Dynamics on random networks

Standard field theoretical manipulations [ZJ02] lead to define the following
Martin-Siggia-Rose generating functional [MSR73,DDP78]:

Zα [ψ,h] =

∫ ∏

i,t

(dgi(t)dĝi(t)) Trσ
∏

it

exp

{
iĝi(t)

[
hi(t)− α

∑

j

Jijσj(t)

]

+σi(t+ 1)gi(t)− log 2 cosh gi(t)− hi(t)ĝi(t) + ψi(t)σi(t)}
(3.31)

where α is introduced to control the coupling strength. By derivatives of the
generating functional we find the moments

− iµ̂i(t) .
=
∂ logZα [ψ,h]

∂Hi(t)
= −i〈ĝi(t)〉α (3.32)

µi(t)
.
=
∂ logZα [ψ,h]

∂ψi(t)
= 〈σ(t)〉α (3.33)

where 〈. . . 〉α denotes expectation under the measure inside the integral in
(3.31). Note that by taking the limits ψ → 0, h → hex and setting α = 1 at
the end of the calculation, (3.33) reduces to the magnetization

mi(t)
.
= 〈σ(t)〉P = lim

ψ→0
µi(t) (3.34)

averaged over the distribution (3.29). In this framework, Hertz and Roudi de-
rive a set of mean field equations by extending the Plefka expansion for the SK
model [Ple82] to the dynamical case. To this end, they draw a parallel between
the logarithm of the generating functional and the Helmholtz free energy in
the equilibrium statistical mechanics; accordingly, the Legendre transform of
logZα corresponds to the Gibbs free energy. While the original Plefka expan-
sion consisted in a weak coupling expansion of the Gibbs free energy, now the
Legendre transform of logZα at fixed moments (3.32-3.33) is Taylor expanded
in powers of α, around α = 0. At the end of the calculation one sets α = 1.
The Legendre transform of logZ with respect to the real and auxiliary fields
is

Γα [µ, µ̂, ] = logZα [ψ,h, ]−
∑

it

ψi(t)µi(t) + ihi(t)µ̂i(t) (3.35)

where the fields ψ,h are functions of the moments (3.32-3.33) according to
the following equations:

∂Γ[µ, µ̂]

∂mi(t)
= −ψi(t)

∂Γ[µ, µ̂]

∂m̂i(t)
= ihi(t).

(3.36)
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3.B Mean field approaches

By expanding (3.35) in powers of α and considering the equations (3.36) within
expansion, one finds the following ’naive’ mean field equation

mi(t+ 1) = tanh

[
hex
i (t) +

∑

j

Jijmj(t)

]
(3.37)

at the first order; a second order expansion yields TAP-like equations,

mi(t+ 1) = tanh

[
hex
i (t) +

∑

j

Jijmj(t)−mi(t+ 1)J2
ij[1−mj(t)

2]

]
, (3.38)

that should be solved self-consistenly for mi(t + 1) at each time step. In this
formulation, the generating functional (3.31) is defined in terms of fields that
act linearly on the degrees of freedom and the Legendre transform (3.35) is
performed by fixing the first order statistics over time. In Paper 1 we will
observe that, in contrast to the equilibrium case, the mean field description is
considerably improved if we take into account also the second order statistics
-namely correlations and responses. In particular, we will introduce these
quadratic terms in the generating functional, so that the second order moments
can be easily found by first derivatives of the generating functional.

In the case of a completely asymmetric network, where the couplings have
variance scaling as 1/N , the correlations between spins at different times is
small [CS88] and the central limit theorem can be used to describe the statistics
of local fields. This the approach followed in [MS11], where the field acting on
each spin at site i and time-step t:

∑

j

Jijσj(t− 1)

is treated as a Gaussian distributed field with mean

gi(t− 1) =
∑

j

Jijmj(t− 1) (3.39)

and variance
∆(t− 1) =

∑

j

(1−mj(t− 1)2). (3.40)

From the definition of the dynamics (3.29), one retrieves the following equation
for the magnetization:

mi(t) =

∫
Dx tanh

[
gi(t− 1) + hex

i (t− 1) + x
√

∆i(t− 1)
]
, (3.41)
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3 Dynamics on random networks

where the integral is over the Gaussian noise Dx = dx e−x
2/2/(2

√
π).

A comparison between the approximations (3.38) and (3.41) is presented
in [SRMH12], where the limit of validity of the two methods are compared.
An extension of the latter method to the case of arbitrary degree of symmetry
is derived in [MS14]. The effective local fields are still assumed to be Gaussian
distributed, but a non-zero covariance between spins at different times is also
considered. The resulting magnetization is

mi(t) =

∫
Dx tanh

[
gi(t− 1) + hex

i (t− 1) + x
√
Vii(t− 1, t− 1)

]
, (3.42)

where gi(t) was defined in (3.39), and

Vij(t, s) = 〈δgi(t)δgj(s)〉 (3.43)

is the covariance of the field fluctuations δgi(t) =
∑

j Jijδσj(t−1),where δsi(t−
1) = si(t) −mi(t). Starting from cavity arguments, the authors analytically
derive a set of recursive equations for calculating covariances at different times
in terms of covariances at previous times. For time indices s ≤ t the result is

V (t, s) = J>A(t− 1)V (t− 1, s) + J>C(t− 1, s− 1)J , (3.44)

where Cij(t, s) = δij〈δsi(t)δsi(s)〉 is the auto-covariance function and

Aij(t) = δij

∫
Dx
[
1− tanh2

(
gi(t) + hex

i (t) + x
√
Vii(t, t)

)]
.

Note that to compute the magnetization (3.42) one needs Vii(t−1, t−1), which
is obtained from (3.44) in terms of past values of V and m, and in terms of
the auto-covariance function at two successive time steps; the latter quantity
is compute to be

Cii(t− 1, t) =

∫
dhi(t)

∫
dhi(t− 1) p(hi(t), hi(t− 1))

tanh [hi(t) +Hi(t)] tanh [hi(t− 1) + hex
i (t− 1)] ,

(3.45)

where p(hi(t), hi(t− 1)) is a bivariate Gaussian distribution with mean vector

(gi(t) , gi(t− 1))>

and covariance matrix given by

(
Vii(t, t) Vii(t, t− 1)

√
Vii(t, t)Vii(t− 1, t− 1)

Vii(t, t− 1)
√
Vii(t, t)Vii(t− 1, t− 1) Vii(t− 1, t− 1)

)
.
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3.C Algorithm with averaged moments

3.C Algorithm with averaged moments

Keeping the same notation, the algorithm of (Paper 1, section 5) is modified
as follows.

• Initial condition: set ski (0) = 1, i = 1...N, k = 1...NT .

• For t = 1...T :

1. Draw the spins at time t from

p(ski (t)) =
es
k
i (t)gki (t−1)

2 cosh gki (t− 1)
, for i = 1...N, k = 1...NT ,

using the fields gki (t− 1) calculated at the previous time step.

2. Compute correlations

Ci(t, t
′) = tanh[gi(t− 1)]si(t′), for t′ = 1...t− 1, i = 1...N,

and their averaged value 〈C(t, t′)〉 .= 1
N

∑
iCi(t, t

′).

3. Draw the Gaussian random variable φki (t) with mean

φ̂ki (t) =
t−1∑

r=0

a(r)φki (r), (3.46)

and covariance

E{[φki (t)− φ̂ki (t)]2} = 1− g2

N

∑

j

m2
j(t)−

t−1∑

r=0

a(r)〈C(t, r)〉, (3.47)

where the coefficient {a(0) . . . a(t− 1)} are computed from

t−1∑

r=0

a(r)〈C(r, t′)〉 = 〈C(t, t′)〉, t′ = 0 . . . t− 1.

4. Compute the sample averages that will be needed in (5):

si(t)φi(t′) = tanh[gi(t− 1)]φi(t′), for t′ = 1...t− 1, i = 1...N.

5. Compute 〈R(t, t′)〉 .= 1
N

∑
iRi(t, t

′), for t′ = 1...t− 1 by solving the
system of linear equations:

1

N

∑

i

si(t)φi(t′) =
t−1∑

τ=1

〈R(t, τ)〉g2[〈C(τ, t′)〉 − 1

N

∑

j

mj(τ)mj(t
′)].
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3 Dynamics on random networks

6. Compute the fields

gki (t) =φki (t) +
∑

j

(Jijmj(t)

−g2 1− k2

1 + k2

t−1∑

t′=0

JijJji〈R(t, t′)〉[ski (t′)−mi(t
′)]

)
+ hi(t),

for i = 1...N, k = 1...NT .

7. Compute the magnetizations at time t+ 1:

mi(t+ 1) = tanh[gi(t)], for i = 1...N.
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4 Learning in kinetic Ising models

4.1 Introduction

In Chapter 3 , we discussed mean-field approaches to the forward problem
for the kinetic Ising model. Given a specific set of model parameters, we
described the time evolution of system observables, such as magnetisations
and correlations.

Here, we focus on the inverse problem: based on a set of measurements from
the system, we want to infer the model parameters (i.e., couplings between the
spins and external fields). The amount of information encoded in the data will
affect the quality of parameter estimation and it is important to quantify how
the performance of the inference algorithm depends on the size of the data
set. This question is particularly relevant in the context of the new high-
throughput data collection techniques, where the number of variables that
can be simultaneously recorded is almost as large as the number of possible
trials [AG16].

In this Chapter, we assume to have access to time series data of length T for a
system ofN spins, specifying the value of each spin at successive time points. A
widely used estimator for the parameters is the maximum likelihood estimator,
which converges in probability to the true value of the parameters when the
size of the dataset (rescaled by the size of the system) tends to infinity, with the
lowest possible asymptotic mean squared error [Cra16]. The likelihood can be
computed in polynomial time in T and N , which makes the computation much
faster with respect to the equilibrium case (see section 5.A). Still, maximum
likelihood conditions must be computed at every step of the iteration, based
on the current value of the parameters, and the iteration can take a long time
to converge, also depending on the choice of initial conditions and learning
rate. A much faster method is provided by approximate techniques, such as
the mean-field methods discussed in chapter 3.

The first focus of this chapter is to analyse the theoretical performance of
estimators based on a mean-field approximation. In a mean-field framework,
inference in kinetic Ising models was initially studied based on data from their
non-equilibrium steady state. The TAP equations (3.6) for the magnetisa-
tion derived at equilibrium for the SK model were argued to be valid for the
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4 Learning in kinetic Ising models

asynchronously [KS00] and synchronously [RH11b] updated Glauber dynam-
ics. Based on those equations, a linear relation between the one-time-delayed
and equal-time correlation matrix, respectively denoted by D and C, can be
found:

J = ADC−1, (4.1)

where the matrix A encodes for the details of the considered approximation
(Appendix 4.C). If the true correlation matrices are replaced by the empirical
ones, this relation provides a linear estimator for the couplings, which can
be simply computed via a matrix inversion. More recently, these results have
been extended to transient dynamics. In chapter 3, we saw that the mean-field
description is particularly simple in the case of an asymmetric network, where
a linear relation between one-time-delayed and equal-time correlation matrices
provides the exact solution in the thermodynamic limit. This relation can be
easily inverted to infer the couplings in the same form as (4.1), where now the
correlation matrices depend on time (see section 4.C). Ideally, correlations are
computed from multiple trials of spin trajectories. However, it is hard to have
access to such data, and averages over trials are replaced by averages over
time [MS11]. Hence, the quality of the estimator will depend on the length of
the observed spin trajectories.

In this framework, we aim to compute the error associated with the linear
mean-field estimator and study how it scales with the length of the observed
trajectories.

The theoretical framework for our analysis is given by the statistical me-
chanics of learning [EVdB01], where the phase space consists of the couplings
to be inferred, while the spin values are considered to be fixed observations.
We work in the so called student-teacher scenario, where the data are gener-
ated independently from a teacher network and a learning algorithm adapts
the couplings of a student network as estimator for the teacher. The error as-
sociated to the algorithm is given by the average mean squared error between
the teacher coupling vector and the student one, where averages are computed
by using the replica method of statistical physics [MPV87,Nis01] 1.

In this chapter, we extend the replica formalism used for learning of percep-
trons to the kinetic Ising model. In the large N limit, two-times correlations
can be neglected in asymmetric networks, for which the memory of the system

1Replica calculations have been widely applied to problems related to learning in feed-
forward neural networks [WRB93, SST92, OK96], following the seminal work of Gard-
ner [Gar87, Gar88], who exploited it to compute the critical capacity of the perceptron
with continuous synaptic weights; more recent applications also include communication
theory [GV05], compressed sensing [GBS09, RGF09, GS10, KMS+12],matrix factoriza-
tion [KKM+16] and and high-dimensional regression [AG16].
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4.2 Paper 2

is lost after one time step (see, e.g., [CS87]). This allows us to use a cen-
tral limit theorem argument to treat the probability distribution underlying
the Markovian dynamics as the distribution of T independent perceptrons,
in the thermodynamic limit of a large system. In each perceptron (corre-
sponding to each time step), the inputs are not independent but spatially
correlated through the equal-time correlation matrix. Surprisingly, we find
that the equal-time spatial correlation matrix has a non-negligible influence
on the estimation error. We compute the statistics of this random correlation
matrix and obtain an explicit result for the estimation error as a function of
the growing length of observed trajectories.

In section 4.3, we study the performance of other two approximate algo-
rithms. First, within the class of estimators that minimize a local cost function
which is quadratic in the couplings, we consider the optimal one, minimising
the mean square error of estimated parameters. Then, we turn to a Bayesian
probabilistic formulation. Introducing a prior distribution, the Bayes optimal
estimator of the parameters is given by their posterior expectation. Since
computing posterior averages exactly is intractable, we propose an analytic
approximation to the posterior expectations based on cavity arguments and
design an efficient algorithm to numerically implement our solution. Finally,
we use an analogous formalism to the one developed in Paper 2 to compute
the error of the Bayes optimal estimator and compare it with the mean-field
and linear optimal estimators.

An introduction to the replica method, applied to the physics of spin glasses
and to the problem of learning in neural networks is presented in section 4.A.1;
the general framework for the statistical mechanics of learning is also briefly
explained. The derivation of the maximum likelihood estimator and of the
linear mean field estimator - both for the stationary and for the transient
dynamics - is given in sections 4.B, 4.C, 4.D, respectively.

4.2 Paper 2.

Author’s contribution: I performed the analytical and numerical calcula-
tions, prepared the figures and contributed to writing the paper.
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1.  Introduction

Recently, the learning of synaptic couplings for a recurrent neural network modelled by 
a kinetic Ising model with random couplings has attracted attention in the statistical 
physics community, see e.g. [1–10]. The model is defined by a system of N Ising spins σi 
connected through couplings Jij. We assume throughout the paper that the interactions 
are non–symmetric, i.e. we have ≠J Jij ji and Jii   =   0. The system evolves in discrete time 
according to a synchronous parallel dynamics, where spins at time t   +   1 are updated 
independently with transition probability (specialised on the case of no external fields)

∣σ σ
β σ

{ − } =
∑ −

βσ σ

=

∑ −

P t t
J t

( ( ) ( 1) )
e

2 cosh( ( 1))
.i j j

N

t J t

j
ij j

1

( ) ( 1)i
j

ij j

� (1)

We are interested in learning the spin couplings Jij, assuming that a complete trajec-

tory σ σ{ } = { }= … = …t( )T i i N t T0: 1, , , 1, ,  of length T for all spins is observed. A well known 

solution to this problem is given by the method of maximum likelihood, which leads 
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to a set of coupled nonlinear equations which have to be solved by iteration. A com-
putationally much simpler and elegant solution valid for large networks with random 
couplings which avoids an iterative solution was recently presented in [1]. This solu-
tion is based on an exact mean field (EMF) expression for spin correlations which can 
be explicitly solved for the couplings. The EMF estimator replaces exact correlations 
by empirical correlations which can e.g. be computed from a single spin trajectory. 
Simulations have shown good agreement between true and estimated couplings [1].

Of course, if there is only a limited number of observations available there will be 
a nonzero estimation error for the EMF method. One may then ask how much one 
has to pay for the numerical efficiency of the algorithm in terms of a loss in statistical 
efficiency. Hence, we would like to investigate at what rate the error decreases with 
growing length of trajectories and if the decrease is slower than that of a statistically 
efficient estimator such as the maximum likelihood estimator which has an optimal 
asymptotic rate [11]. Using the replica method we will compute the estimation error of 
the EMF method in the thermodynamic limit →∞N  assuming that the data are gener-
ated from a kinetic Ising model with true couplings drawn at random from a Gaussian 
distribution. The analysis of the statistical properties is significantly simplified by the 
fact that kinetic Ising models with non–symmetric random couplings have spin correla-
tions which decay after a single time step (see for example [12]) and computations of 
learning curves resemble those for temporally independent data. A nontrivial aspect 
however is the occurrence of equal time spin correlations of the spin dynamics. We 
compute an exact result for the statistics of the random correlation matrix. From this it 
is possible to obtain an explicit expression for the learning curve for the EMF algorithm 
and the asymptotics of the ML estimator.

2. Estimators

The EMF estimator [1] is based on a linear relation between the time-delayed and the 
equal time correlator matrices,

δσ δσ δσ δσ= = +C t t D t t( ) ( ) , ( 1) ( ) ,ij i j ij i j⟨ ⟩ ⟨ ⟩� (2)

for the spin fluctuations �δσ σ −t t m t( ) ( ) ( )j j j , where mj(t) denotes the local magnetisa-
tion at time t and the brackets …⟨ ⟩ denote expectation with respect to the spin dynam-
ics (1). Here we assume stationarity for which the matrices are time independent. If the 
couplings Jij are assumed to be mutually independent Gaussian random variables, with 
zero meand and variance 1/N, the following mean field relation is found to be exact in 
the thermodynamic limit →∞N  :

∑=D a J C ,ij i

k

ik kj� (3)

where

D∫ ∑β β= 
 − 

 + ∆ 


 ∆ = −( )a x H x J m1 tanh , (1 )i i i

j
ij j

2 ext 2 2

� (4)
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and Dx is the normal Gaussian measure. Throughout the paper we will specialise to 
the case of zero external field and vanishing initial magnetisations. In this case we have 
mi(t)   =   0, =H 0ext , ∆ = 1i  and

D∫β β= = −a a x x[1 tanh ( )]i
2

� (5)

is independent of time. For the estimator the exact correlation matrices C and D are 
approximated by empirical averages using a long trajectory of spins (assuming zero 
magnetisations):

∑ ∑σ σ σ σ→ = → = +
= =

C C
T

t t D D
T

t tˆ 1
( ) ( ), ˆ 1

( 1) ( ).ij ij

t

T

i j ij ij

t

T

i j

1 1
� (6)

One can then obtain the couplings by inverting (3) as follows:

∑=
−

J
a

D C
1 ˆ ˆ .ij

k

ik kj

1

� (7)

It is easy to see that the EMF estimator can be rephrased as the minimiser of the 
following cost function

∑ ∑σ σ=





− −




=

t a J tE
1

2
( ) ( 1)

t

T

i

j

ij jMF
i

1

2

� (8)

with respect to the couplings { } =Jij j
N

1
. Note that the estimation of the ingoing couplings 

{ } =Jij j
N

1
 for each spin i can be treated separately for the coupling distribution we are con-

sidering. The EMF estimator is based on simple explicit computation (inversion of the 
correlation matrix in (7), which is possible if the parameter α = T N/  is grater than 1)  
which makes the method fast. Other estimators such as the well known maximum 
likelihood method (ML) have to resort to numerical optimisations using iterative algo-
rithms which could become computationally involved for large system sizes N and a 
large number of data T. The ML estimator maximises the probability of spin histories 

σ{ } T0:  given by

∏ ∏σ σ σ σ{ } = { − }
= =

=JP P t t P( ) ( ( ) ( 1) ) ( (0)),T
i

N

t

T

i j j
N

0:
1 1

1
∣ ∣� (9)

where σP( (0)) is the initial probability of spins. Since this probability factorises in the 

spins i and Jij are assumed independent, the ML estimator for all couplings { } =Jij j
N

1
 

pointing into spin i minimises the cost function

∑ ∑ ∑βσ σ β σ=





− − +





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
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t J t J tE ( ) ( 1) ln 2 cosh ( 1) .
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i

j

ij j

j

ij jML
i

1
� (10)

While minimizing the cost function (8) just requires the computation of the empiri-
cal averages Ĉ and D̂, in order to minimize (10) with respect to Jij one needs to com-

pute the quantity σ β σ∑ ∑t J t( ) tanh ( ( ))t j j ij j  that explicitely depends on the current 



Learning of couplings for random asymmetric kinetic Ising models revisited

5doi:10.1088/1742-5468/2015/09/P09016

J. S
tat. M

ech. (2015) P
09016

value of Jij and has to be recomputed at each step of the algorithm, adding a ⋅N Tstep  

operation to the calculation. We observe that in order to avoid second order methods in 
the solution we need a fine tuning of the step size which makes the algorithm fairly slow 
for large N. Although it is more computationally expensive, the ML estimator has the 
important property that it is asymptotically (i.e. for →∞T ) efficient. This means that 
the asymptotic convergence of the mean squared estimation error to zero (assuming the 
model is correct) happens at a rate which is minimal for any (asymptotically) unbiased 
estimator [11]. In the following we will compute the error of the EMF algorithm in 
the thermodynamic limit →∞N T, , keeping α fixed and compare with the asymptotic 
α→∞ optimal error rate of the ML estimator.

3. Learning curves from the replica approach

In this section we will introduce the replica method for computing the EMF prediction 
error as a function of the scaled number of observed data. We will work in a teacher–
student scenario [13, 14], where the data are assumed to be generated at random from 

the dynamics of a teacher network with random couplings J*
ij . We will use the scaling 

=J W N* */ij ij  and assume that the W*
ij  are independent Gaussian random variables 

with N∼W* (0, 1).ij  We can treat the estimation of the ingoing couplings ≡ { } =W W* *
ij j

N
1
 

for each spin i separately. For the sake of simplicity, in the following we will drop the 
index i and define �W Wj ij. The average square prediction error for any estimator of 
the couplings given by W  is defined as

*� �ε ρ= − = − +W W
N

Q
1

1 2 ,2
� (11)

where we defined

� �ρ = ⋅ =− −W W WN Q N* , .1 1 2� (12)

The bar denotes an average over the spin trajectories σ{ } T0:  generated with cou-
plings W* and over the teacher couplings. We will now analyse the performance of 
algorithms which minimise a cost function of the type

E∑ ∑σ σ= = −
=

E t h h
N

W t( ( ), ),
1

( 1),
t

T

t t

j

j j

1

such as (8) and (10), on a random finite set of spin trajectories of size T. One can 
compute average properties such as the order parameters ρ and Q by introducing an 
auxiliary probability density of couplings,

= ν−Wq
Z

( )
1

e ,WE( )
� (13)

with a formal inverse ‘temperature’ parameter ν and the partition function
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∫σ = ν−WZ( ) d e .WE( )
� (14)

For any ν, we can compute disorder averages of ‘thermal averages’ of variables such 
as ρ and Q from the quenched average of the free energy per coupling, defined by

σ σν ν= − = −
∂
∂

− − −

→

−F N Z
n

N Zlog ( ) lim log ( ).
n

n1 1 1

0

1
� (15)

By taking finally the limit ν→∞ (zero ‘temperature’), the probability density (13) 
concentrates at the minimum of WE( ) and we can extract the desired order parameters. 
To compute the average, we will make the following assumptions. While the spins σ t( )i  are 

still treated as binary random variables, in computing expectations over σ t( )j  for ≠j i we 

assume a central limit theorem to be valid for the fields ht as sums of a large number of 
weakly dependent random variables. Hence, we consider only the second order statistics of 

these variables and treat them as Gaussian random variables. For equal times the corre-

sponding Gaussian density would be Nσ{ } =≠ Cp t( ( ) ) (0, )j j i , where the stationary covari-

ance matrix C is a random matrix which itself depends on the random matrix of teacher 

couplings W* of the entire network. For different times ≠ ′t t , dependencies between 

spins σ t( )j  and σ ′t( )k  are neglected. This is in accordance with our previous assumptions 
for − >′t t 1∣ ∣ , but we need an extra argument to justify neglecting Djk giving the correla-
tions at times t and t   +   1. In principle, D might enter the computation of order param-
eters as well. Equation (3) shows a relation between the D and C matrices involving the 
teacher couplings linearly. The arguments presented later in section 4 indicate that for the 
asymptotic random matrix calculations involving similar relations we can treat teacher 
couplings and random matrices C as asymptotically independent. Hence, we argue that in 
an expectation over teacher couplings the contributions due to D vanish. We will see later 
that the statistical properties of the matrix C will enter the final result of the learning 

curve through the self averaging moment �−
−CC Tr

N1
1 1. We will then show in section 4 

how this and other moments can be computed. Thus we will include the average over the 

teacher couplings W*
kj for ≠k i in the statistics of C, but we need to perform the average 

over the teacher couplings ≡W W* *
j ij  pointing to spin i explicitly. Finally, the dependencies 

between random correlation matrices C at different times are also neglected for →∞N . 

This results in an effective statistical weight over spin histories given by
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where the Gaussian measure accounts for our prior knowledge on the teacher couplings 
distribution. Hence, for large N, we are effectively dealing with the statistical mechan-

ics of a learning problem for a binary classifier neural network (aka logistic regression), 

where the ‘input’ data σ −t( 1)j  are used to predict the ‘outputs’ σ t( )i ; the input variables 
are independent for different t, but have nontrivial ‘spatial’ correlations given by the 
matrix C. The calculation of the free energy follows the steps of replica calculations for  
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perceptron learning problems [13–15]. Averages over σ t( )j  factorize over time and can 
be expressed through Gaussian fields ha for each replicated coupling variable Wa, and 

fields *σ= ∑ −u W t( 1)
N j j j
1

 for the teacher. Under the replica symmetry assumption, 

which is plausible to be correct for convex cost functions, the covariances are expressed 
by order parameters

∑= =u
N

W C W
1 * * 1,

ij
i ij j

2
� (17)
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a b

ij
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and the free energy (15) is computed as (appendix A):
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The limit ν→∞ will occur with →q q0 , since the different solutions W  have to 
converge to the same minimum. In this limit, keeping the quantity � ν−x q q( )0  finite, 
we finally get

D D
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Remarkably, the explicit dependence of F on the correlation matrix (last term in the 
first line of equation (21)) drops when taking the limit ν→∞. Hence, the result we get 
for F and for the order parameters extremizing F is the same that we would get if the 
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spins over which we are computing the expectations were independent and the matrix C 
was not included in the calculation. Still, the correlation matrix affects the error through 
the parameters ρ and Q defined in (11), which are found to be (appendix A)

ρ = R,� (23)

= + − −CQ R q R
N

( )
1

Tr ,2 2 1
� (24)

where R and q are the order parametrs extremizing the free energy (22). Inserting the 
above equations in (11) we find the following result for the error:

ε = − + + −


 −



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−CR q q R
N

1 2 ( )
1

Tr 1 .2 1
� (25)

The last term represents the effect of the correlations of the data on the error and 
vanishes when C equals the unit matrix. This term can be shown to be positive and 
leads to an increase in error. In section 5 we will give explicit results for the error of 
the EMF algorithm.

4. Statistics of correlation matrices

In this section we show how one can compute the stationary value of the negative inte-
ger moment of the spin correlations

≡−
→∞ →∞

−CC
N

tlim lim
1

Tr ( ),
t N

1
1

� (26)

necessary for the estimation error (25). Here the bar denotes expectation with respect 
to independent random Gaussian couplings with zero mean and variance 1/N. Our 
analysis begins with the time evolution for the correlation matrix C t( ) assuming zero 
magnetisations mj(t)   =   0. Following [1], we can assume that in the limit of large N 

the random variables gi and gj, where σ=∑g J t( )i k ik k , are zero mean Gaussian random 

variables with =∑g g J C t J( )i j kl ik kl lj⟨ ⟩  and =g 1i
2⟨ ⟩ . An expansion with respect to weak 

correlations similar to equations (15)–(16) in [1] yields the time evolution

�γ+ = +C I JC Jt t a t( 1) ( ) ( ) ,2
� (27)

where I is the unit matrix, =C I(0)  and J is the ×N N  coupling matrix. The self-
averaging quantity γ must be determined such that Cii(t)   =   1 yielding the condition 

that �γ = − JC Jt a t( ) 1 Tr ( )2 . Defining =
γ

B Ct t( ) ( )
t

1

( )
 and assuming γ γ+ ≈t t( 1) ( ) 

one finds the simplified iteration

� �∑+ = + =
=
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Note that in the limit of small β (small a) one could choose to truncate the sum 
in (28) to the first order in a (corresponding to k   =   0) and thus approximatig B by 
the unit matrix, or to keep the first two orders in a (up to k   =   1) and thus getting 
the sum of the unit matrix and a Wishart matrix. From the above equations we get 

�γ γ→ =∞ +
tlim ( )t a

1

1 2. We can use (28) to derive an iteration for the generating func-

tion of integer moments. In the thermodynamic limit the calculation simplifies remark-

ably. Consider e.g. the computation of → +∞ B tlim Tr ( 1)N N
k1

 for some integer k. One 

would have to deal with terms of the form

�� � �JB J JB J JB J
N

t t t
1

Tr( ( ) ( ) ( ) ).� (29)

Writing B t( ) as the sum in (28) one is left with a sum of averages involving only the 
J and �J  matrices. Given the Gaussian form of the J random matrix, Wick’s theorem 
applies and the expectation in (29) can be computed using diagrammatic techniques. 
As is well known [16], for →∞N  only the planar diagrams, i.e. the ones for which lines 
are not crossing, will contribute to the limit. Besides, note that in the evaluation of (29) 

the terms containig J . . .J and J . . .J  pairings will vanish because of the asymmetry 

of the J matrix. It is easy to see (an example is given in appendix C) that this implies 

that also pairings of the kind B(t) . . .J and B(t) . . .J  are forbidden, where B(t) . . .J 

is a shortcut to indicate the pairing between J and any of the Js contained in B t( ). 
Hence, in computing moments by iteration over time, we can formally treat B t( ) as 
independent from Jk. We will not pursue the diagrammatic approach further but use 
this independence directly in the selfconsistent computation of the generating function 
S(x) of the asymptotic integer moments. This is given by

∑= = −
∞ =

∞

→

S x S x x B( ) lim ( ) ( ) ,
t

t

k

k
k

0

�

where

� +
∞

−

→

BS x
N

I x t( ) lim
1

Tr( ( )) ,t
N

1

�

(30)

=
→∞ →∞

BB
N

tlim lim
1

Tr ( ),k
t N

k
� (31)

Finally, from S(x) we can also deduce (26)

γ
=−

→∞
C xS x

1
lim ( ).
x

1� (32)

We use an expression for St(x) based on the Gaussian ensemble of auxiliary 
N-dimensional vectors y. This is defined by the partition function
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�

� � �

∫

∫

∏

∏

=





− + +







=





− + −







+ y B y

y y y JB J y

Z x y I x t

y x
a x

t

( ) d exp
1

2
( ( 1))

d exp
1

2
(1 )

2
( ) ,

t

i
i

i
i

1

2�

(33)

from which the generating function is obtained as

�=+
→∞ +y yS x

N
( ) lim

1
,t

N
t1 1⟨ ⟩� (34)

where the brackets denote expectation wrt to (33). We compute the average over ran-
dom matrices J, using the fact that we can neglect the dependency between the ran-
dom matrices J and B t( ) in the partition function (33). An annealed average of (33) 
and the limit →∞t  (appendix B) yields the self consistent equation

=
+

S x
x
S a xS x( )

1

1
( ( )).2

� (35)

The explicit computation of moments is facilitated by introducing an auxiliary 
function ϕ, its power series expansion (whose coefficients are denoted by Mk) and its 
inverse by

∑φ =
−



 −



= −

=

∞

x
a x

a x
S

x

a x
x x M( ) ( 1) ,

k

k k
k

2

2 2
0

� (36)

φ=



 +






a yS y
a y

y
( )

1
.2

2

� (37)

From (30), (36) and taking the limit →∞y  in (37), we obtain

∑γ
φ

γ
= = −−

=

∞

C
a

a a M
1

( )
1

( ) .
k

k
k1 2

2

0

2
� (38)

We will next see how to obtain closed form expressions for the Bk and Mk recur-
sively. Let us first show that for known values of …B B, , n1 , we can compute Mn. From 
(35) and (36) we get the expression

φ φ=x xS x( ) ( ( )).� (39)

Applying Lagrange’s inversion formula [17] to (39) one can express the coefficients 
of the power series expansion of φ x( ) in terms of those of S:

∑φ φ φ φ=
−
+

{ } =
−
+












−










+

=

∞

M
n

S
n

B
( 1)

1
[ ] ( ( ))

( 1)

1
[ ] ( 1) ,n

n
n n

n
n

k

k k
k

n

1

0
� (40)
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where φ[ ]n  denotes the coefficient of φn in a power series expansion of the mathematical 
expression in the brackets {…}. Finally, we insert in (40) the expansion of S (30). One 
can see that the coefficients are of the form

= + … −M B f B B( , , ),n n n n1 1� (41)

where the functions f n can be computed in closed form for any n with a computer 
algebra programme such as Mathematica. To obtain a relation for Bn, we expand both 
sides of (36) into powers of y. Using elementary properties of binomial coefficients and 
comparing coefficients of yn yields the second explicit relation

∑ ∑=






 = +









= =

−

B a
n

l
M a M a

n

l
M .n

l

n
l

l
n

n

l

n
l

l

0

2 2

0

1
2

� (42)

Hence, inserting (41) into (42), we obtain

∑=
−






… +











−

=

−

B
a

a f B B a
n

l
M

1

1
( , , ) .n n

n
n n

l

n
l

l2
2

1 1

0

1
2

� (43)

Unfortunately, the series (38) turns out to be an asymptotic one. Coefficients Mn 
diverge for →∞n  and one has to use a regularisation method such as the Borel summa-
tion or the Padè approximation in order to extract a useful result out of a finite num-
ber of coefficients. We have resorted to the latter method (appendix D). Our results 
obtained in this way are in excellent agreement with simulations of the kinetic Ising 
model for N   =   200 and T   =   1000. Figure 1 shows that for small values of a, i.e. small 
β, the matrix ≈C I. For increasing β also −C 1 increases but remains finite. Note, that 

for β→∞, the parameter a converges to the value π=a 2/ .

5. Results

In the case of the EMF estimator (8) the free energy (22) becomes:

D D∫∑α
β

σ

= −







−
+






− − − + + −












σ

βσ

( ( ))

F
q R

x
u v

u

z
a x z Ru q R v

Extr
2

e

2 cosh( )

2

1

2
.

q R x z

u

, , ,

2

2

0
2

2

0

0

�

(44)

Integration by part shows that D∫ β =u u u atanh( ) , thus the above equation 

reduces to

α
=






−
−

+
+ −






F
q R

x a x
a q a RExtr

2 1
(1 2 ) ,R q x, ,

2

2
2 2

� (45)

and the extremum conditions yield the following equations for the order parameters:
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=R 1� (46)

α
α

=
− +
−

q
a

a

( 2) 1

( 1)

2

2� (47)

α
=

−
x

a

1

( 1)
.

2� (48)

Inserting the above equations in (25) the error is computed as follows:

ε
α

=
−

− −a

a N
C

1

1

1 1
Tr .EMF

2

2
1� (49)

We defer a detailed analysis of the finite α performance of the ML estimator to a 
future publication. Here we are interested in the leading behaviour of the decay of the 
prediction error as α→∞. It is well known that ML estimators are asymptotically effi-
cient, i.e. the errors decay at an optimal speed. Hence, our asymptotic result should be 
a yardstick that allows for a comparison of algorithms. The calculation in appendix F 
shows that for large values of the α parameter this optimal error decays as

�ε
β α

−

a N
C

1 1
Tr .opt

1
� (50)

Hence, for α→∞, we have

ε

ε β
=

−α→∞

a

a
lim

(1 )
.

opt

EMF
2� (51)

For small β, i.e. large stochasticity of the spins, we have � βa  and both algorithms 
decay at the same rate. This can still be seen in figure 2 for β = 1, where the EMF 

Figure 1.  The analytic result(black line) for =−
−C

N
C

1
Tr1

1 is compared with the 

values obtained from simulation (blue line) for N   =   200 and T   =   1000. Results are 
averaged over 50 istances of the network and error bars are negligible.
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algorithms performs close to optimal. For larger β, the spins behave more deterministi-
cally and as shown in figure 3 the EMF algorithm deviates significantly from optimal-
ity. We have also included data points from a simulation of a penalised ML estimator, 

where we have minimised the cost function 
�

+E
W W

ML 2
 numerically by a gradient 

Figure 2.  Mean squared error of the couplings inferred with the EMF method 
(red dots) for a system of size N   =   200 with β = 1. Results are averaged over 25 
istances of the network. Error bars are negligible. The red line corresponds to the 
replica result for the EMF prediction error, the blue line to the replica result for 
the asymptotic optimal prediction error.

1 100
 α

1

 ε
 β=1

Figure 3.  Mean squared error of the couplings inferred with the EMF method 
(red dots) for a system of size N   =   200 with β = 5. Results are averaged over 25 
instances of the network. The red line corresponds to the replica result for the EMF 
prediction error, the blue line to the replica result for the optimal prediction error. 
The blue dots are results from simulations of a penalised ML algorithm. Error bars 
are negligible. For large values of α, the EMF method displays finite-size effects 
(see the red dot at α = 50), which are stronger for larger β. The green dot takes 
into accout finite-size corrections, and it is obtained as explained in figure 4.

1 100
 α

0.0001

0.01

1

 ε

 β=5



Learning of couplings for random asymmetric kinetic Ising models revisited

14doi:10.1088/1742-5468/2015/09/P09016

J. S
tat. M

ech. (2015) P
09016

descent algorithm. Note that the penalty term we chose is equivalent to the prior 
and we are thus maximizing the log-posteror. One can see that this type of algorithm 
achieves asymptotic optimality. Finally, with increasing β the ratio (51) decays to zero. 
While the decay rate of the EMF algorithm converges to a nonzero value (note that 

for β→∞, we have π→a 2/ ), the optimal asymptotic error rate converges to zero 

indicating a transition to a faster decay than α1/  in the limit. It is also interesting to 

note that for larger β simulations of the EMF algorithms show strong finite size effects 
in N and the error reaches a plateau for increasing α. Hence, we had to apply a finite 
scaling for the last simulation point in figure 3 .

6. Outlook

It will be interesting to develop and study algorithms which include prior knowledge 
about the couplings to be learnt. This could be done within a Bayesian approach where 
a prior probability density over couplings is specified. In this way one may e.g. introduce 
sparsity. Using a similar replica approach, one could compare the performance of differ-
ent algorithms to that of the Bayes estimator, which is optimal on average over teacher 
networks drawn at random from the prior. A nontrivial question is that of an algorithmic 
realisation of the Bayes predictor. We expect that cavity approaches (TAP equations) 
could be applied to get a tractable approximation which becomes exact in the thermody-
namic limit. We also expect that one should include explicit knowledge of the statistics 
of the spin correlations into such an approach in order to get optimal performance.
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Figure 4.  EMF prediction error for fixed α = 50 and β = 5 as a function of N. 
Fitting a power law to the data we find the asymptotic value valid for large N, 
which corresponds to the green dot in figure 3.
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Appendix A. Details of the replica calculation of the free energy

After some standard manipulations [13–15], the quenched free energy (15) is  
computed as

D D

D E

∫

∫

∑
ν

α
β

= −











+







 − +




















σ

βσ

ν σ



 − +





− − +

F G R q q t y

t y

z

Extr
1

( , , )
e

2 cosh 1

log e ,

q R q

t y

R

q

R

q

q q z q y

, , 0

1

( , )

R
q

R
q

0

0

0
2

2

0 0

�

(A.1)

where G(R, q, q0) is the weight of the coupling vectors W  which are constrained by the 
order parameters:

=
∂
∂→

G R q q
n N

Z( , , ) lim
1

ln ,
n

0
0

coup� (A.2)

with
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(A.3)

We can decouple the integrals over different spins by diagonalising �= ΛC U U  and 
transforming to new variables � →U W Wa a, � →U W W* * which we give just the same 
name:

∫ ∏ ∏ ∑

∏ ∑ ∏ ∑
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(A.4)

The integration over the couplings and the auxiliary parameters gives rise to the 
following equation for G:

=
−
−

− − −G R q q
q R

q q
q q

N
C( , , )

1

2

1

2
log( )

1

2
Tr log .0

0
2

0
0� (A.5)

In order to compute the parameters ρ and Q from the free energy F , we introduce 

the auxiliary variables η η{ },1 2  in the partition function Zcoup (A.4) as follows:
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By derivatives with respect to η η{ },1 2  and taking the limit η η→ →0, 01 2  one recov-
ers (24).

Appendix B. Derivation of the generating function

For a Gaussian model without external field we have =y 0i⟨ ⟩ , hence = ∑ =q y 0
N i i
1 2⟨ ⟩  

and there is no need to introduce replicas, (absence of spin–glass ordering) and we can 
restrict ourselves to an annealed average. Decoupling the quadratic form in the expo-

nent of (33) using correlated Gaussian random vectors with covariance � =zz B t( )c⟨ ⟩ , 
we get
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(B.1)

where in the second line we have introduced polar coordinates �= y ys
N

1
. We 

compute the final integral for →∞N  by Laplace’s method, and use the fact that 

from (34) the maximiser of the integral gives �= = +y ys S x( )
N t
1

1⟨ ⟩ . Finally from 

− + = +BI a xs t Z a xsTr ln( ( )) const ln ( )t
1

2
2 2  we get the recursion

=
+

+ +S x
x
S a xS x( )

1

1
( ( )).t t t1

2
1� (B.2)

Taking the limit →∞t  yields (35).

Appendix C.  Independence of the J and B(t) matrices: an example

To better illustrate the independence of the J and B t( ) matrices, let us give an exam-
ple and consider the evaluation of one of the terms needed for the computation of 

→ +∞ B tlim Tr ( 1)N N
k1

 (see (29)):
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� �JB J JB J
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t t
1

Tr( ( ) ( ) ).� (C.1)

The only sets of contractions giving nonzero contribution in the large N limit are 
the following two:

1

N
Tr(JB(t)J JB(t)J ) =

1

N
Tr B(t)

2
,

1

N
Tr(JB(t)J JB(t)J ) =

1

N
Tr(B(t)2 .)

� (C.2)

The contractions involving the pairing of a J with a B t( ) vanish, since they involve 

either J . . .J (J . . .J ) pairings or crossing lines (resulting in non planar diagrams), 

as shown in the two examples below:

1

N
Tr(JB(t)J JB(t)J ) = 0,

1

N
Tr(JB(t)J JB(t)J ) = 0.� (C.3)

Appendix D. Padè Approximant

The so called Padè approximant [18], is a rational function (of a specified order) whose 
power series expansion agrees with a given power series to the highest possible order. 
Given a rational function of the form
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then R is said to be the Padè approximant to the series
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if the following set equations is satisfied:
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which gives M   +   N   +   1 equations for the unknowns …a a, , M0  and …b b, , N0 .

Appendix E. Details on the statistics of the correlation matrix

The iterative methods explained is section 4 allows us to calculate the moments Bk and 
Mk, defined respectively in (31) and (36), for any given k. As an example, in the follow-
ing we will enumerate the first three moments.
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Appendix F. Asymptotic order parameters for ML estimator

The free energy for the ML estimator is given by
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It is possible to show that for α→∞ one can assume that − →q R 02 , →x 0 and 

→q 1. Expanding the α dependent part of (F.1) for small x , solving for z and finally 

taking the limit →q R2, we obtain
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This yields the following asymptotic scaling of order parameters:

� � �
α α

−R x
b

q R
b

1,
1

,
1

.2
� (F.3)

Inserting the above expressions in the definition (25) one obtains (50).
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ERRATA CORRIGE: Equation (22) should be replaced by

F = −Extrq,R,x




q −R2
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4.3 Further results

4.3.1 The optimal linear estimator

We discuss the performance of another estimator, obtained by minimizing a
cost function of the same form as the one of the linear mean-field estimator:

Ei =
1

2

T∑

t=1

(
σi(t)− a

∑

j

Jijσj(t− 1)

)2

, (4.2)

where now a is a free parameter. This allows us to derive the optimal linear
estimator.

The replica calculation explained in Paper 2 is used to find the estimation
error. The order parameters of the model are found from equations (Paper 2,
43). However, for the mean field estimator, equations (Paper 2, 44-46 ) follow
from the explicit definition of the parameter a (Paper 2, 4). If we now consider
a as a free parameter, the saddle point equations become:

R =

∫
Dx x tanh(βx)

a
, (4.3)

q =

(∫
Dx x tanh(βx)

)2
(α− 2) + 1

(α− 1)a2
, (4.4)

x =
1

2(α− 1)a2
(4.5)

and the error (Paper 2, 25) is

ε =1− 2
∫
Dx x tanh(βx)

a
(4.6)

+
(α− 1− 1

N
TrC−1)

(∫
Dx x tanh(βx)

)2
+ 1

N
TrC−1

(α− 1)a2
. (4.7)
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The value of a which minimizes (4.7) is

aopt =

∫
Dx x tanh(βx) +

1
N

TrC−1
[
1−

(∫
Dx x tanh(βx)

)2
]

(α− 1)
∫
Dx x tanh(βx)

, (4.8)

with the corresponding minimal error

εopt =

1
N

TrC−1
[
1−

(∫
Dx x tanh(βx)

)2
]

(α− 1− 1
N

TrC−1)
∫
Dx x tanh(βx) + 1

N
TrC−1

. (4.9)

The error shows no divergence for α = 1 (Figure 4.1) and reaches the same
asymptotic value as the mean field estimator. Since aopt is independent on
the couplings and can be directly estimated from data, the associated linear
estimator

Jij =
1

aopt

∑

k

D̂ikĈ
−1
kj (4.10)

only relies on one matrix inversion and it is very fast to compute. Also,
with respect to the linear mean field estimator, the optimal linear estimator
shows weaker finite size effects, providing a faster and better algorithm. Still,
comparison with the asymptotic error of maximum likelihood shows that linear
estimators are suboptimal for large values of β.

4.3.2 Bayesian inference

In a Bayesian setting, if the correct prior knowledge on the distribution of the
parameters is introduced, one can design an algorithm that is asymptotically
optimal: it is the Bayes optimal estimator given by the posterior expectation of
the parameters. However, posterior averages require high dimensional integrals
to be computed exactly. Here, we propose an analytic approximation to the
posterior expectations based on cavity arguments.

Let us recall the likelihood of a spin sequence
σ = {σ(0) . . . σ(T )} for given couplings W :

P (σ|W ) =
T∏

t=1

N∏

i=1

e
β√
N
σi(t)

∑
jWijσj(t−1)

2 cosh β√
N

∑
jWijσj(t− 1)

P (σ0), (4.11)

where P (σ0) is the initial distribution of spins. As prior distribution over the
couplings, we consider a univariate Gaussian distribution:

Wij ∼ N (0, 1) (4.12)

93



4 Learning in kinetic Ising models

1 100

 α

0.01

1

 ε

 β=5

Figure 4.1: Mean squared error of the couplings inferred with different algo-
rithms as a function of α. Light blue dots correpond to the linear
optimal algorithm, red dots correspond to the mean field algorithm
of Paper 2, green dots to penalized maximum likelihood. We con-
sider a system of N = 200 spins with β = 5. Results are averaged
over 25 istances of the network. Continuous line refer to the av-
erage error from the replica calculation, light blue for the linear
optimal and red for the mean field algorithm. The green dotted
line shows the asymptotic error for the maximum likelihood algo-
rithm.

independently for any i = 1, . . . , N and j = 1, . . . , N . The posterior distribu-
tion

P (W |σ) ∝ P (σ|W )P (W ) (4.13)

represents the information about likely couplings, when a spin trajectory σ
is observed. The Bayes optimal prediction for the couplings is given by the
posterior mean 〈W 〉, where the brackets denote an expectation over the poste-
rior. Since the couplings are non-symmetric, coupling vectors W (i) at different
neurons i are neither interacting in the likelihood (4.11) nor in the prior (4.12).
Hence, inference for different coupling vectors can be done independently for
each W (i).

We write the posterior distribution of the coupling vector W (i) as the product
of factors:

p(W (i)|σ) =
1

p(σ)

T∏

t=0

ft(W
(i)), (4.14)
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where, for t = 0, the factor f0(W (i)) coincides to the prior

f0(W (i)) =
1√
2π
e−

1
2

∑
j(W

(i)
j )2

, (4.15)

while the other factors correspond to the likelihood:

ft(W
(i)) =

e
βσi(t)

1√
N

∑
jW

(i)
j σj(t−1)

2 cosh β√
N

∑
jW

(i)
j σj(t− 1)

for t = 1...T. (4.16)

The normaliser is given by the partition function

Z(σ) =

∫
dW (i)

T∏

t=0

ft(W
(i)). (4.17)

To lighten notation, in the following we will drop the superscript i of the and
consider the inference problem for a singular spin vector.

4.3.3 Approximating the posterior by cavity arguments

We are interested in computing an approximation to the posterior statistics
of Wj. Since the prior is Gaussian, the following exact representation for the
first two moments is derived using integration by parts:

〈Wj〉 = β
T∑

t=1

σj(t− 1)√
N

{σ(t)− 〈tanh(βht)〉} (4.18)

1

N

∑

j

(
〈W 2

j 〉 − 〈Wj〉2
)

= 1− β2

N

T∑

t=1

{〈(ht − 〈ht〉) tanh(βht)〉} . (4.19)

where the brackets denote expectation with respect to the posterior distribu-
tion (4.14) of the field ht:

ht =
1√
N

∑

j

Wjσj(t− 1). (4.20)

We will now derive an approximation to the distribution p(ht) of ht using a
cavity argument. We first write

p(ht) ∝ ft(ht)p
\t(ht), (4.21)

where p\t(ht) is the ’cavity distribution’ of ht, i.e the distribution over a system
where the term ft was left out of the posterior. Using standard arguments (see
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section 3.A.1) based on central limit theorem, in the large N limit, p\t(ht) is
assumed to be a Gaussian:

p\t(ht) =
1√

2πλ\t
e
− 1

2λ\t
(ht−γ\t)2

. (4.22)

To close the system of equations, we express the mean γ\t and the variances
λ\t in terms of the ’full’ expectations 〈Wj〉 and 1

N

∑
j

(
〈W 2

j 〉 − 〈Wj〉2
)
. This

yields the following relations:

λ\t = λ =
1

N

∑

j

(
〈W 2

j 〉 − 〈Wj〉2
)
, (4.23)

1√
N

∑

j

〈Wj〉σj(t− 1) = 〈ht〉 =
〈htft(ht)〉\t
〈ft(ht)〉\t

= γ\t + βλ\t {σ(t)− 〈tanh(βht)〉} . (4.24)

In the first equation, we have neglected correlations between couplings and
assumed that total cavity variance and ’full’ variance of couplings are equal in
the thermodynamic limit. To derive the second equation, we used the Gaussian
form of the cavity distribution and an integration by parts.

4.3.4 A simple expectation propagation algorithm

It is not a priori clear how the sets of coupled nonlinear equations (4.18), (4.19),
(4.23) and (4.24) can be solved in an efficient way to get explicit predictions.
We have resorted to the so–called Expectation Propagation (EP) algorithm,
an approximate inference techniques widely used in machine learning [OW00,
Min01]. We will state the algorithm first and then show that its fixed points
agree with the solution of the cavity equations (4.23) and (4.24).

The algorithm is based on an auxiliary Gaussian approximation q(W ) to the
posterior, which is used for book–keeping of the first and second order moments
of the Wj and their respective cavity statistics. This pseudo–posterior q(W )
can be written as a product of factors:

q(W ) =
1

Z̃

T∏

t=0

f̃t(W ), (4.25)

where Z̃ is a normalizing term, f̃0(W ) = f0(W ) and for t = 1, . . . , T

f̃t(W ) =
(

2πλ̃(t)
)−N/2

exp

[
− 1

2λ̃(t)

∑

j

(Wj − µ̃j(t))2

]
. (4.26)
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We are approximating each factor ft(W ) of the true posterior (4.14) with
one Gaussian factor f̃t(W ). In this version of the algorithm, which we call
’Naive EP’, we are making the simplifying assumption that the covariance
matrix of (4.26) is diagonal. We will later discuss the case where the full
covariance matrix is considered. In order to determine the set of parameters
of the approximate posterior, the factors f̃t(W ) of the overall approximation
are optimized sequentially. Suppose we wish to refine the factor f̃t(W ). We
first remove it from the current approximation of the posterior to get the
unnormalized ’cavity’ distribution, which is also Gaussian:

q\t(W ) =
q(W )

f̃t(W )
. (4.27)

A new approximate posterior qnew(W ) is then computed by introducing the
following distribution,

1

Zt
ft(W )q\t(W ), (4.28)

which corresponds to the old q(W ) where one Gaussian factor f̃t(W ) has been
replaced by one factor ft(W ) of the true posterior, and Zt is normalizing
the distribution to 1. In particular, the approximate posterior is updated by
minimizing the Kullback-Leiber divergence

KL

(
1

Zt
ft(W )q\t(W )

∣∣∣∣ qnew(W )

)
. (4.29)

Since the approximating distribution qnew(W ) is Gaussian, it is easy to prove
[Bis06] that minimizing (4.29) is equivalent to matching the expected sufficient
statistics of qnew(W ) to the corresponding moments of (4.28). Finally the
revised form of the factor f̃t(W ) is obtained as

f̃t(W ) = Zt
qnew(W )

q\t(W )
. (4.30)

The algorithm involves the computation of three Gaussian distributions, (4.27)
(4.28) and q(W ) by sequentially updating their sufficient statistics. We denote
the mean of the approximate posterior q(W ) by µ and its covariance matrix
by Λ = Iλ. A summary of the algorithm is described as follows.

• Set f̃0 equal to the prior

• Initialize all the factors f̃t to 1 for t = 1...T

• Iterate until convergence:
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1. For t=1...T

a) Update the moments of the cavity distribution (4.27):

µ
\t
j =

λ̃(t)µj − λµ̃j(t)
λ̃(t)− λ

Λ\t = Iλ\t, λ\t =
λ̃(t)λ

λ̃(t)− λ
.

(4.31)

b) Match the first and second moments {µj, λj} of the approxi-
mate posterior with the ones of the distribution (4.28). The
latter moments can be computed as derivatives of the generat-
ing function:

Zt(ψ) =

∫
dWq\t(W )ft(W )e

∑
jWjψj , (4.32)

in the limit ψ → 0. For the first moment we obtain the following
condition (see 4.E for details):

µj
.
= µ

\t
j + β

λ\t√
N
σj(t− 1)

[
σ(t)− 〈tanh(βh\t)ft(ht)〉\t

〈ft(ht)〉\t

]
,

(4.33)

where the average is over a gaussian field with variance λ\t and
mean γ\t,

γ\t =
1√
N

∑

j

σj(t− 1)µ
\t
j . (4.34)

The second moments λj turn out to be independent of j, due
to the property σ2

j = 1 of Ising spins. One gets (4.E)

λ
.
= λ\t+β2 (λ\t)2

N

{
2
〈tanh(βh\t)[tanh(βh\t)− σ(t)]ft(ht)〉\t

〈ft(ht)〉\t

−
[
σ(t)− 〈tanh(βh\t)ft(ht)〉\t

〈ft(ht)〉\t

]2
}
. (4.35)

c) Evaluate and store the new factors f̃t(W ) using (4.30). Its
moments are:

µ̃j =
λ\tµj − λµ\tj
λ\t − λ ,

λ̃ =
λ\tλ

λ\t − λ.
(4.36)
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From (4.25) we see that, after convergence, we can compute the the moments
of the posterior distribution as:

µj = λ

T∑

t=1

µ̃j(t)

λ̃(t)
, (4.37)

λ =

(
1 +

T∑

t=1

1

λ̃(t)

)−1

. (4.38)

In 4.F we show that those fixed point equations are equivalent to the expected
moments (4.23) and (4.24) of the couplings obtained from cavity arguments.

4.3.5 Average case: a replica analysis

The average prediction error for the Bayes optimal estimator can be computed
in a student-teacher setting with a replica analysis, analogously to the analysis
of Paper 2. We now work in a Bayesian framework, where the student has
prior knowledge about the teacher. The distribution of the student couplings
is given by the posterior distribution (4.14) and the partition function Z(σ)
is the normalizer (4.17) of the posterior distribution:

Z(σ) =

∫
dW

1√
2π
e−

1
2

∑
j(Wj)

2
∏

t

e
βσi(t)

1√
N

∑
jWjσj(t−1)

2 cosh β√
N

∑
jWjσj(t− 1)

(4.39)

Since (4.14) also represents the posterior distribution corresponding to a prior
distribution of random teachers, Z(σ) will be proportional to the total prob-
ability P (σ):

P (σ) =
Z(σ)

C , (4.40)

where C =
∑
σ Z(σ) is the normalization factor. Hence, the teacher and the

student network enter the calculation in a completely symmetric way: the
average student-teacher overlap equals the average student self-overlap, and
the error is

ε =
1

N
(W ∗ − 〈W 〉)2 = 1− 〈W a ·W b〉, (4.41)

where 〈. . . 〉 denotes averaging with respect to the distribution of couplings.
The error can be computed from the free energy using the replica trick as
follows:

F = −N−1
∑

σ

P (σ) logZ(σ) = − lim
n→1

∂

∂n
N−1 log

∑

σ

Zn(σ). (4.42)
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In order to compute the average over the spin trajectories, we consider the
same approximation described in the paper, that we argue to be correct in
the limit N → ∞. For the central spin σ0, the variables σ0(t) are binary
at all times t. The other spins {σj(t − 1)}j 6=0 enter the partition function
through the fields

∑
j 6=0 W

a
j σj(t− 1). Since the system is weakly coupled, the

central limit theorem tells us that such fields are Gaussian distributed and
we treat the spins {σj(t − 1)}j 6=0 themselves as Gaussian random variables:
p({σj(t)}j 6=0) = N (0,C). The stationary covariance matrix C takes into
account equal time spatial correlations among the spins {σj(t− 1)} for j 6= 0,
while dependences at different time steps are neglected. The partition function
is:

∑

σ(t)

Zn(σ) =

∫ n∏

a=1

dW a 1√
2π
e−

1
2

∑
aW

a.W a




∑

σ0

∏

j 6=0

dσj
1√
|2πC|

e−
1
2

∑
i,j 6=0 σiC

−1
ij σj

n∏

a=1

e
βσ0

1√
N

∑
j 6=0 W

a
j σj

2 cosh β√
N

∑
j 6=0W

a
j σj





T

.

(4.43)

We have remapped the kinetic Ising model in a number T of logistic regression
models, whose inputs are not independent but correlated through the matrix
C. The stationary value of the matrix C depends on the (teacher) couplings
and encodes for non-trivial equal time correlations among spins. We computed
its statistics in Paper 2. Averages over the spins σj can be expressed through
Gaussian fields

ha
.
=

1√
N

∑

j

W a
j σj (4.44)

whose covariances in the limit N → ∞ will become self averaging order pa-
rameters. Under the assumption of replica symmetry, correct for convex cost
functions, we have:

〈
h2
a

〉
=

1

N

∑

ij

W a
i CijW

a
j = 1, (4.45)

〈hahb〉 =
1

N

∑

ij

W a
i CijW

b
j
.
= q a 6= b. (4.46)

The first equality follows from the fact that the matrix C represents the cor-
relation between all the spins but σ0; hence, it is independent of W0j. The
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calculation, detailed in 4.H, yields:

F = −Extrq,q̂
1

2

{
q̂(q − 1)− 1

N
Tr(1− q̂C)

+α
∑

σ

∫
Dy A(σ, y, q) logA(σ, y, q)

}
,

(4.47)

where

A(σ, y, q) =

∫
Dx eβσ(x

√
1−q+y√q)

2 cosh[β(x
√

1− q + y
√
q)]
. (4.48)

Here, Dx = (dx/
√

2π)e−x
2/2, Dy = (dy/

√
2π)e−y

2/2 and the parameter α =
T/N represents the rescaled length of the trajectories. The saddle point equa-
tions for the order parameters, extremising the free energy (4.47) are:

q = 1 +
1

q̂

(
1− 1

N
Tr(1− (q̂C)−1)−1

)
,

q̂ = −α
∑

σ

∫
Dy B(σ, y, q)/A(σ, y, q),

(4.49)

where

B(σ, y, q) =

[
β

∫
Dx
(
σ − tanh(x

√
1− q + y

√
q)
) eβσ(x

√
1−q+y√q)

2 cosh[β(x
√

1− q + y
√
q)]

]2

.

In order to compute the error (4.41) we need the typical overlap between
two student networks, that is different from the parameter q (4.46). It can be
computed from (4.109), by noticing that

1

q̂

∑

i

∂

∂Λi

1

N
lnZn

c = − 1

2N

∑

a6=b

∑

i

〈W a
i ·W b

i 〉 (4.50)

From (4.41) and (4.50) one gets the final result for the mean square error:

ε = 1− 2

q̂

∑

i

∂

∂Λi

F0(q, q̂) =
1

N
Tr(I − q̂C)−1. (4.51)

4.3.6 Results

We evaluate the analytic expression of the error (4.51) from the system of equa-
tions (4.49) and from the statistics of the C matrix (Paper 2). Figure (4.2)
compares the results with the mean square error of the couplings inferred by
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4 Learning in kinetic Ising models

using the Naive Expectation Propagation algorithm of section 4.3.4. The data
are generated from a kinetic Ising model with independent Gaussian couplings
with variance 1/N . The Naive Expectation Propagation algorithm, where the
true posterior distribution is approximated by a Gaussian distribution with
diagonal covariance matrix, is in good agreement with the theoretical predic-
tions of the Bayes estimator. For large values of α, the error of Expectation
Propagation deviates from the replica result due to finite size effects. Figure
(4.3) shows that it converges to the replica result for large N . In particular, we
fix α = 500 and show how the error decay as a function of N . Fitting a shifted
power low to the data we obtain an asymptotic value εN→∞ = 0.0007±0.0004,
which is in good agreement with the replica value ε = 0.000746. For small
values of α, Expectation Propagation outperforms all other algorithms. For
completeness, in Appendix 4.G we design a ’Complete’ Expectation Propaga-
tion algorithm, where the posterior distribution is approximated by a Gaussian
with full covariance matrix. We tested it for values of α up to 10: the error
is not significantly lower than the one of Naive EP while the required time
for convergence is much higher. Regarding computational complexity, each
iteration of both the Expectation Propagation and Maximum Likelihood al-
gorithms to estimate one coupling vector {Wj} requires a computation of the
order TN . Expectation Propagation, though, converges in much fewer steps
and shorter time. For instance, for a system of N = 100 spins at α = 10, we
needed approximately 284 updates of the learning rates for maximum likeli-
hood (25 seconds) and 5 iterations over time for EP (2 seconds).

4.4 Conclusions

In this chapter we considered a kinetic Ising model where the couplings are
independent Gaussian random variables with variance scaling as 1/N , and
computed the error of three different estimators for the couplings, working
in a a student-teacher scenario. We analysed a linear mean field estimator,
which can be rephrased as the minimizer of a local quadratic cost function;
an estimator based on an anlogous quadratic cost function, which contains a
free parameter that is optimized to minimize the estimation error; the optimal
Bayes estimator, where a prior distribution is introduced and the couplings
are estimated as their posterior averages.

The replica calculation revealed the importance of equal-time correlations
between spins at different sites: despite being of the order 1/

√
N [MS11], they

significantly affect the estimation error, especially when the stochasticity of the
spin dynamics is decreased. By computing an exact result for the statistics of
the random correlation matrix, we find an explicit expression for the learning
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Figure 4.2: Mean squared error of the couplings inferred with different algo-
rithms as a function of α. Red dots correspond to the mean field
algorithm of Paper, green dots to maximum likelihood, blue dots
to Naive EP and light blue dots to linear optimal. We consider a
system of N = 200 spins with β = 5. Results are averaged over 25
istances of the network. Continuous line refer to the average error
from the replica calculation, red for the mean field algorithm (see
Paper) and blue for the Bayes estimator. The green dotted line
shows the asymptotic error for the maximum likelihood algorithm.

curve of the three algorithms, which agrees very well with simulations.

By comparison with the asymptotic error of the maximum likelihood es-
timator, which has the property of asymptotic optimality, we assessed the
performance of the considered methods. The error of linear estimators, such
as the linear mean-field one, is asymptotically close to optimal one for weak
couplings, whereas it deviates from optimality for stronger couplings.

If the prior corresponds to the true distribution of the parameters, the
Bayes optimal estimator provides an asymptotically optimal estimator; the
intractable integrals required to compute posterior averages can be approxi-
mated using the cavity method of statistical physics, and we solved the re-
sulting set of equations by an algorithm of the Expectation Propagation type:
the true posterior distribution of the couplings is approximated by a Gaussian
distribution, whose mean and covariance are updated iteratively, in such a way
that the approximated distribution is as close as possible to the true one (in
the sense of KL-divergence). The fixed point equations for the moments of
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4 Learning in kinetic Ising models

Figure 4.3: Mean squared error of the couplings inferred with the Naive EP
algorithm, plotted as a function of N for fixed α = 500 and β = 5.
We fit a rescaled power law to the data to find an asymptotic value
εN→∞ = 0.0007± 0.0004 and a decay exponent 0.48± 0.007.

the posterior distribution are equivalent to the ones obtained from cavity ar-
guments. An interesting question, that we leave to future research, is whether
our Bayesian estimator implemented via the Expectation Propagation algo-
rithm becomes exact in the limit N →∞ (i.e., whether our approximation to
the true posterior averages become exact in the thermodynamic limit).

Moreover, as a future direction, it would be interesting to extend our results
to other types of networks. Particularly relevant for practical applications are
sparse networks. Prior knowledge on the couplings could be introduced via a
spike and slab distribution, widely used in machine learning for sparse linear
models (see, e.g., [MB88, GM93, BBB+03, BBB+03]). Each weight Jij of the
prior would be set to zero with probability 1 − π and drawn from a Gaussian
distribution with probability π . This would allow us to use the Expectation
Propagation algorithm developed in this section to infer the couplings in sparse
networks.

For what concerns the analytical analysis, the basic ideas underlying our
replica formalism can be applied to other systems. The idea of treating one
central spin as the output of a perceptron whose inputs are correlated through
a cavity matrix C, will inspire the analysis presented in the next chapter.
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Appendix

4.A The replica method: from spin glasses to
neural networks

The replica trick is a long-established method in the analysis of disordered sys-
tems; dating back at least to Hardy [HLP34] as an identity for computing the
average of a logarithm (see also the work of Kac [Kac68]), it was reintroduced
by Edwards [Edw70] for a model of rubber elasticity and became well known
with its application to spin glasses [EA75, SK75]. After the seminal work of
Gardner [Gar87, Gar88], it has been widely used to study learning in neural
networks in a statistical mechanics framework [WRB93,OK96,EVdB01].

In the following sections, I will first introduce the replica method in the con-
text of spin glasses; then, I will show how this statistical mechanics formalism
is applied to the problem of learning in neural networks.

4.A.1 Spin glasses and the replica trick

Spin glasses are the simplest models for glassy systems [Par06]. They have been
widely studied in the last 40 years not only to derive some of the main prop-
erties of glassy systems, but also because they provided a framework to study
properties of other physical systems, as fragile glasses, colloids and granular
materials; moreover, and many ideas developed in the field were later applied
to combinatorial optimization problems and learning in neural networks.

The Hamiltonian of a spin glass with pairwise interactions is:

H(σ) = −
∑

i,j=1,...,N

Jijσiσj −
∑

i=1,...,N

hexi σi (4.52)

where σi are Ising variables (i.e., σi = ±1) located on a lattice vertices, the
couplings Js are random variables located on the edges of the lattice and hexi
are local external fields.

Many models of spin glasses have been studied, according to the distribu-
tion of the couplings and the topology of the lattice. We will consider the
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Sherrington-Kirkpatrick (SK) model c, introduced in 1975 as an exactly solv-
able model of a spin glass; all couplings are random variables with a Gaussian
or bimodal distribution with variance 1/N , and the network is fully connected.

The disorder induced by the randomness of the couplings is assumed to be
quenched, which means that the changes in the Js happen on a time scale
infinitely larger than the typical time scale of spin fluctuations. If the system
observables depended on J , it would follow that the physical properties of spin-
glasses are different for each different realization of the quanched disorder. In
contrast, it turns out [Cav09] that extensive quantities, such as the free energy,
have the property of self-averageness: in the thermodynamic limit (infinite
volume limit) they assume the same value for each realization of the couplings.
This means that analytically we can average over J , and the obtained result
is in agreement with the physical value of the observable.

Let us now focus on the SK model, whose Hamiltonian is

H(σ) = −
∑

i<j

Jijσiσj −
∑

i

hexi σi (4.53)

where the couplings Jij are independent Gaussian random variables with zero
mean and variance J0/N , and hexi is the external field. Denoting by fJ and ZJ
the free energy and the partition function of a sample with a set J of couplings:

fJ = − 1

βN
logZJ = − 1

βN
log Tr{σ}e

−βH(σ), (4.54)

where β is the inverse temperature, we are interested in computing the average
value over the disordered distribution of the free energy,

f =

∫
dJ P (J)fJ = − 1

βN
logZJ , (4.55)

where the overbar (...) denotes the average over the disorder distribution, which
is called quenched average. The computation of such average is technically dif-
ficult, since it requires averaging the logarithm of the partition function. A
much easier approach would be to consider the annealed average of the free
energy, that is the logarithm of the average of the partition function. However,
while F is an extensive quantity, this is not the case for Z (which is exponen-
tial in the system size), and therefore Z is not in general self-averaging. To
overcome the difficulty, Edwards and Anderson proposed to apply the replica
trick, which makes use of the relation log(x) = limn→0

xn−1
n

to transform the
logarithm in a power law:

−βNf = lim
n→0

Zn − 1

n
. (4.56)
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4.A The replica method

One first assumes that n is integer, and can see Zn as the partition function of
n replicas of the same system, that share the same realization of the couplings
but are non-interacting. Then one must perform the limit n → 0, and later
N → ∞, to get the self-averaging value of the free energy (in practice, it
turns out that reverting the order of the two limits is not a source of trouble).
Without going into the details of the calculation (an example will be given in
Paper 4) we point out that the integral in

Zn =

∫
dJ P (J)Tr{σa} exp

[
β
∑

i<j

Jij
∑

a

σai σ
a
j + β

∑

i

hexi
∑

a

σai

]
, (4.57)

where a is the replica index, can be easily performed; since the Js are coupled
to a quadratic term in the spins, one can use the inverse Gaussian integral
(Hubbard-Stratonivich transformation) to uncouple the spins σai in the sites
and sum over all possible spin configurations. This procedure naturally intro-
duces the spin overlap

qab =
1

N

∑

i

σai σ
b
i , a < b, (4.58)

which represents the typical overlap between two configurations in a given
state belonging to two different replicas.

Sherrington and Kirkpatrick [SK75] considered a replica symmetric (RS)
ansatz for the order parameter: the overlap is the same no matter what two
replicas are chosen,

qab = q(1− δab). (4.59)

However, their result turned out to have some unphysical feature, such as a
negative entropy at low temperatures. It was first thought to be a problem
related to exchanging the n → 0 limit with the large volume limit N → ∞
when computing the free energy, but it later became clear [DAT78,BM80] that
the problem resides in the symmetry of the replica ansatz.

The replica symmetry breaking (RSB) calculation was presented in a series
of papers by Parisi [Par80a, Par80b, Par80b]; its solution was physically con-
sistent and confirmed both by numerical simulations and by other analytical
methods. Yet, it took over 20 years for the reluts predicted by the RSB cal-
culation to be rigorously proven by Talagrand [Tal06], using the interpolation
method of Guerra [Gue03].

Our work will focus on systems for which the replica symmetric ansatz is
correct. Hence, we refer the reader to the literature mentioned above and
to [MPV87] for a description of the replica symmetry breaking method; here,
we just mention a few key concepts.
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The replica symmetry breaking (RSB) procedure can be described as an
iterative process that sequentially reparameterizes the n x n matrix with el-
ements qab. The starting point (0-th step) is the ansatz (4.59), where the
matrix has zero entries on the diagonal and values qab = q0 for all non di-
agonal values. At the 1-st step, the n x n matrix is diveded in n/m1 blocks
of size m1x m1: the off-diagonal terms of the diagonal blocks take value q1,
the other terms remain unchanged. The correct solution was found by con-
sidering an infinite number of steps of RSB. The analysis of the probability
distribution of the order parameters yielded a geometrical characterization
of the space of solutions, that turned out to be an ultrametric space, where
qac ≤ min(qabqbc) [MPS+84, MV85]. This is a signature of the complex free–
energy landscape of the spin glass phase, where an infinitely large number
of minima are separated by barriers that grow indefinitely as the system size
increases [Par83]. The number of minima (metastable states) in exponentially
large in the size of the system N [BM80], and so is the time spent by the
system in every single valley: in the large N limit ergodicity is broken [MY82].

4.A.2 Statistical mechanics of learning: general setup

In this section, we introduce the statistical mechanics framework to analyze the
theoretical performance of learning algorithms in the so called teacher-student
scenario. For further reading, see [WRB93,OK96,EVdB01].

Let us begin by defining a neural network as a set of nodes, or neurons,
that can take values ±1 and influence each other’s state through directed
connections Wij. Among the various architectures that have been studied, we
will focus on layered networks; we refer to the the first layer as the input, and
to the last layer as the output. For simplicity, we will further assume that the
network has only one layer of N input nodes with values S = {Si} and one
node in the in the output layer, whose state is σ. The state of the neuron σ is
set to a function of the weighted sum of the inputs, where the weights are the
connections Wj (here W = {Wi} is an N dimensional vector):

σ(W ;S) = g

(∑

j

WjSj

)
, (4.60)

where g is a generic non-linear function. The term learning refers to the process
of setting the weights to the values that make the network perform a desired
task, that is a target input-output mapping which will be denoted as the rule.
We will focus on supervised learning, where the weights are adjusted as to
approximate as closely as possible a target function σ0(S). This is achieved
by providing the network with a training set, that is a set of M input/output
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4.A The replica method

pairs {S(k), σ
(k)
0 }Mk=1 generated by some unknown mapping, and by requiring

that the network adapts its weight to map each pair well2. We assume that
the inputs are are generated independently at random from the input space
according to some probability distribution P (S). The target mapping can
be represented by another network with weights W ∗, or teacher network,
that knows the correct mapping and generated the examples. The learning
network W is called the student and the prescription {S(k), σ

(k)
0 } →W that,

given the training set, specifies the student coupling vector is referred to as the
learning rule. In particular, a rule for which a network in the student space
exists that realizes the target function σ0(S) is called learnable. Otherwise
the rule is called unlearnable.

In order to measure the deviation of the network output σ(W ;S) from the
target output σ0(S), we introduce an error function E(W;S) which is zero if
teacher and student agree on the output to S and larger than zero otherwise.

Based on the error function, one can define an extensive energy, which scales
with the number of examples; if such energy is defined not to depend explicitly
on the unknown rule, it can be used in a learning algorithm. A widely used
choice is the training energy

E(W) =
M∑

k=1

E(W;S(k)), (4.61)

and training is usually achieved by minimizing such training energy, for exam-
ple via gradient descent.

After the student network has learned a rule from a limited set of examples,
it can make predictions on novel inputs. The ability of a network to generalize
from a limited number of examples to the whole space of inputs is measured
by the generalization function:

ε(W) =

∫
dS P (S)E(W;S). (4.62)

Let us introduce one learning scenario that is particularly well suited for a
theoretical analysis and that we will consider in chapters 4 and 5: the case
of Gibbs learning at non-zero temperatures. In this case training is achieved
by minimizing a generic training energy of the form (4.61), according to a
stochastic dynamics governed by the Langevin relaxation equation

∂W

∂t
= −∇WE(W) + η(t), (4.63)

2We will not consider the case where the data available for training are corrupted with
noise.
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where η is a white noise with variance

〈ηi(t)ηj(t′)〉 = 2Tδijδ(t− t′). (4.64)

At zero temperature the noise drops out leaving us with a simple gradient
descent equation. In learning algorithms, the noise can be useful in escaping
local minima of the energy; the temperature is slowly decreased so that the
system settles near to the global energy minimum at T ≈ 0. The dynam-
ics (4.63) generates at long times the Gibbs probability distribution on the
parameter space for a canonical ensemble of networks

ρ(W) =
1

Z
exp[−νE(W)] (4.65)

where ν = 1/T quantifies the noise of the training procedure, and the normal-
ization integral

Z =

∫
dW exp[−βE(W)] (4.66)

measures the weighted accessible volume in the configuration space. In the
limit ν →∞ the system settles at the global energy minimum 3. The typical
behaviour of a network can be now computed via thermal averages, denoted
by 〈. . . 〉, with respect to the distribution (4.65). Note however that the above
quantities still depend on the random choice of a specific training set {S(k)}Mk=1.
Moreover, we do not want to consider a specific realization of the teacher
network, but we assume that the teacher network is drawn at random from a
teacher rule space. Both the teacher network and the data sets independently
generated from it are randomly chosen and kept fixed during the learning
procedure, and they represent - in the language of the statistical physics of
spin glasses -a quenched disorder. It turns out however that the error (4.62) is
self-averaging in the limit of N →∞, which means that almost any realization
of the teacher network and training set will give the same result. We will denote

3This distribution, arising naturally for stochastic algorithms, was also introduced by Levin
Tishby Solla [LTS90] from a statistical estimation theory perspective, where the train-
ing process in feedforward neural networks is seen as a parameter estimation problem.
The solution can be found by setting the parameters to the value that maximizes the
likelihood of the training set of M independent examples. Imposing that the maximiza-
tion of the likelihood be equivalent to the minimization of an additive error of the form
(4.61) for every set of independent training examples, the authors arrive at the Gibbs
canonical distribution on the ensemble of all networks with the same parameter space
(i.e., networks with the given architecture). The distribution depends on a free positive
parameter, which determines the level of acceptable training error as well as the tevel of
stochasticity in the training algorithm, and can be interpreted as an inverse temperature.
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quenched averages by overlines :

(. . . ) =

∫ ( M∏

k

dSk

)
dW∗

M∏

k

p(Sk|W∗)p(W∗)(. . . ). (4.67)

The average generalization error 〈ε(W)〉 will then depend on the noise pa-
rameter ν in the thermal average and on the number of examples M in the
quenched average, which we will assume to be proportional to the number
of degree of freedom (i.e. independent synaptic weights): M = αN , with α
finite. Given a distribution of the inputs and an energy function, one can
use the tools of statistical mechanics to calculate the quenched averages and
derive the average generalization error from derivatives of the free energies, in
the thermodynamic limit of N →∞. The calculation of the quenched average
of the free energy per coupling,

F = −N−1ν−1logZ, (4.68)

can be carried out using the replica method. The quantity

lim
n→0

1

n
lnZn

has to be evaluated for integer n and then analytically continued to n = 0.
The replicated partition function yields

Zn =

∫ ( n∏

a=1

dWa

)
e−NαGr[{W

a}] (4.69)

where the replicated Hamiltonian is

Gr[{Wa}] = − ln

∫
dS dW∗p(S|W∗)p(W∗) exp[−β

n∑

a=1

E(Wa;S)]. (4.70)

The average generalization error can then be computed as follows:

〈ε(W)〉 = lim
n→0

Zn−1

∫
dW ε(W) exp[−βE(W)]

= lim
n→0

∫ ( n∏

a=1

dWa

)
ε(W1) e−NαGr[{W

a}].

(4.71)

The integration over the inputs will couple the weights of different replicas of
the system, which makes it natural to introduce order parameters - represent-
ing the overlap of the weights of two copies of the student networks and the
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overlap between the teacher and the student network - that will convey the
dependence of Gr on the weights. The values of these order parameters are
the ones that extremize Gr; computing the saddle point equations for the pa-
rameters requires making an ansatz about the symmetry of the parameters at
the saddle point. That simplest ansatz is the replica symmetric ansatz, whose
validity can be assessed by studying the local stability of the replica symmetric
saddle point. In this thesis, we will consider convex cost functions of the weight
vector, which ensures the replica symmetric ansatz to be correct [EVdB01].

4.B Maximum likelihood estimator

Let us consider the Markovian dynamics for the Ising model that we introduced
in Paper 1, which is described by the transition probability

p(σ(t+ 1)|σ(t)) =
N∏

i

exp[βσi(t+ 1)hi(t)]

2 cosh βhi(t)
, (4.72)

where we defined the field hi(t) =
∑

j Jijσj(t) +Hext
i (t). The log-likelihood of

the system parameters is

L(J ,Hext) =
1

T

∑

t

∑

i

[βσi(t+ 1)hi(t)− log 2 cosh βhi(t)]. (4.73)

To find the maximum likelihood parameters, one starts from an initial sets
of couplings and external fields, and then adjust them iteratively by gradient
ascent; the derivatives are given by

∂L
∂Hext

i (t)
= 〈σi(t)〉r − 〈tanh hi(t)〉r,

∂L
∂Jij

=
1

T

∑

t

〈σi(t)σj(t)〉r − 〈tanh hi(t)σj(t)〉r,
(4.74)

where we assumed that Nr realizations of the trajectories can be observed,
and the brackets 〈. . . 〉r represent empirical averages over different realizations.
The derivatives (4.74) can be evaluated in N2TNr computational steps, which
makes the computation much faster than the Likelihood of the equilibrium
Ising model, where the normalizer of the Boltzmann distribution scales expo-
nentially with the system size.

112



4.C Mean field estimators

4.C Mean field estimators for the stationary state

Let us summarize the derivation of the mean field relation between the coupling
matrix and the correlation matrix found in [RH11b] for a kinetic Ising model
with parallel dynamics.

We start from the definition of one-step-delayed and equal time correlation
matrices for the spin fluctuation δσi(t) = σi(t)−mi(t) , that can be computed
from data:

Dij = 〈δσi(t+ 1)δσj(t)〉 (4.75)

Cij = 〈δσi(t)δσj(t)〉 (4.76)

where 〈...〉 are empirical averages; in the stationary case, averaging over time
and repeats would be equivalent, so in this paragraph for any function of time
f(t) observed over a trajectory of length T , we define

〈f(t)〉 =
1

T

∑

t

f(t).

By setting the gradient of the likelihood (4.74) to zero, one gets

〈σi(t+ 1)σj(t)〉 = 〈tanh[hi(t)]σj(t)〉. (4.77)

We now expand the effective local field hi(t) around its mean field solution.
Formally, we write si = mi + δsi, and use the naive mean field equation
mi = tanh[

∑
j Jijmj + Hi] for the magnetization. From (4.77), expanding

tanh[hi(t)] in powers of δsi we get to the leading order

〈δσi(t+ 1)δσj(t)〉 = (1−m2
j)
∑

k

JnMF
ik 〈δσk(t)δσj(t)〉, (4.78)

which can be written as

JnMF = AnMFDC−1, (4.79)

where

AnMF
ij = δij(1−m2

i ). (4.80)

The TAP inversion formula is derived analogously [RH11b] and also results in
the linear relation

JTAP = ATAPDC−1, (4.81)
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where

JTAPij = AnMF
ij (1− Fi), (4.82)

and Fi is the smallest root of the following cubic equation:

Fi(1− Fi)2 = (1−m2
i )
∑

j

(JnMF )2
ij(1−m2

j). (4.83)

4.D Mean field estimators for the transient
dynamics

In the case of out-of-equilibrium dynamics we refer to the three mean field
theories of section 3.B; analogous relations to (4.79, 4.82) can be found for the
the one-time-delayed and equal time correlation matrices, defined as

Dij(t) = 〈δsi(t+ 1)δsj(t)〉
Cij(t) = 〈δsi(t)δsj(t)〉,

(4.84)

where now the matrices depend on time. Starting from the dynamical mean
field equation of (3.38), by using the same expansion as in (4.C), one finds he
following relation:

D(t) = A(t)J(t)C(t) (4.85)

where Aij = δijai is a diagonal matrix with elements

ai(t) =
(
1−m2

i (t)
)
[

1−
(
1−m2

i (t)
)∑

j

J2
ij

(
1−m2

j(t− 1)
)
]
. (4.86)

For the mean field theory (3.41), which is exact for asymmetric networks,
the key observation is that when couplings scale as 1/

√
N , also each matrix

element will be of the order 1/
√
N . We define the field fluctuation δgi(t) =∑

j Jijδsj(t − 1), and note that the joint distribution of δgi(t) and δgj(t) has
small covariance ε = 〈δgi(t)δgj(t)〉. By an expansion in small ε, one retrieve
the relation (4.88), where now Aij = δijai,

ai(t) =

∫
Dx
[
1− tanh2

(
gi(t) +Hi(t) + x

√
∆i(t)

)]
. (4.87)

In [MS14], the authors derive recursive equations that allow to compute corre-
lations between spins at different times, starting from cavity arguments. The

114



4.E Expectation Propagation algorithm: generating function of the moments

equal time and one-time-delayed correlation matrices are related through the
following relation:

(1− δ)D(t) = A(t)J(t)C(t), (4.88)

where δ is the unit matrix, so that (1−δ)D(t) contains only non-diagonal terms
of the covariance matrix D, i.e. Dij i 6= j; its diagonal elements of the form
Dii(t) have to be computed separately according to (3.45). Please note that
in the present chapter we are using the notation Dij(t) = 〈δsi(t+ 1)δsj(t)〉, to
draw a parallel between techniques used for the stationary case and the ones
valid for the transient dynamics; in section 3.B we were using Cij(t + 1, t) =
〈δsi(t+ 1)δsj(t)〉. The elements of the diagonal matrix A in (4.88) are

ai(t) =

∫
Dx
[
1− tanh2

(
gi(t) +Hi(t) + x

√
Vii(t, t)

)]
, (4.89)

where the definitions of gi(t) and Vii(t, t) are respectively (3.39) and (3.43).

4.E Expectation Propagation algorithm:
generating function of the moments

The moment generating function for the distribution (4.28) is

Zt(ψ) =

∫
dWq\t(W )ft(W )e

∑
jWjψj

=
(
2πλ\t

)−N/2 ∫
dWe

− 1

2λ\t
∑
j(Wj−µ\tj )2

e
βσi(t)

1√
N

∑
jWjσj(t−1)

2 cosh β√
N

∑
jWjσj(t− 1)

e
∑
jWjψj .

(4.90)

Enforcing the definition of ht by delta function and introducing the integral
representation of the delta, one obtains:

Zt(ψ) =
(
2πλ\t

)−N/2 ∫
dW dh dĥ e

− 1

2λ\t
∑
j(Wj−µ\tj )2 eβσi(t)h

2 cosh(βh)

exp

{
iĥ

[
h− 1√

N

∑

j

W
(i)
j σj(t− 1)

]
+
∑

j

Wjψj

}
.

(4.91)
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The integration over dW yields:

Zt(ψ) =

∫
Dφ dh dĥ eβσi(t)h

2 cosh(βh)
exp

{
iĥ

[
h− λ\t√

N

∑

j

σj(t− 1)ψj

− 1√
N

∑

j

σj(t− 1)µ
\t
j − φ

]
+
λ\t

2

∑

j

ψ2
j +

∑

j

ψjµ
\t
j

}
,

(4.92)

where Dx = (dx/
√

2πλ\t)e−φ
2/2λ\t is the probability density for a Gaussian

variables with zero mean and variance λ\t. One recovers (4.33 ) from ∂ logZ(ψ)
∂ψj

and (4.35) from ∂2 logZ(ψ)

∂ψ2
j

in the limit ψ0.

4.F Fixed point of the Expectation Propagation
algorithm

From (4.33), (4.36) and (4.37) we find

µj

(
1

λ
−

T∑

t=1

1

λ̃

)
=

T∑

t=1

β√
N
σj(t− 1)

[
σ(t)− 〈tanh(βh\t)ft(ht)〉\t

〈ft(ht)〉\t

]
. (4.93)

Using (4.38), this yields equation (4.18), while (4.24) is recovered from (4.33)
and (4.104). From (4.36) and (4.38) we observe that

λ\t =

(
1 +

∑

τ 6=t

1

λ̃(τ)

)−1

≈ λ for large t, (4.94)

which is equivalent to (4.23). Hence, from (4.35), we get

1

λ̃(t)
=
λ̃2(t)

λ̃(t)λ

β2

N

{
2
〈tanh(βh\t)[tanh(βh\t)− σ(t)]ft(ht)〉\t

〈ft(ht)〉\t

+

[
σ(t)− 〈tanh(βh\t)ft(ht)〉\t

〈ft(ht)〉\t

]2
}

≈ β2

N

{
2
〈tanh(βh\t)[tanh(βh\t)− σ(t)]ft(ht)〉\t

〈ft(ht)〉\t

+

[
σ(t)− 〈tanh(βh\t)ft(ht)〉\t

〈ft(ht)〉\t

]2
}
,

(4.95)
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where in the last equality we used (4.94). Inserting the above equation in
(4.38), the following expression for the posterior variance is found:

λ ≈
{

1 +
β2

N

T∑

t=1

[
2
〈tanh(βh\t)[σ(t)− tanh(βh\t)]ft(ht)〉\t

〈ft(ht)〉\t

+

(
σ(t)− 〈tanh(βh\t)ft(ht)〉\t

〈ft(ht)〉\t

)2
]}−1

.

(4.96)

This equals the combination of equation (4.23) and (4.19), when the latter is
expressed through the cavity fields.

4.G Complete Expectation Propagation

We now approximate the posterior (4.14) by a gaussian distribution of the
form

q(W ) = N (µ,C) (4.97)

where C is the full N × N covariance matrix. We assume that q(W ) can be
also written as a product of factors,

q(W ) =
1

Z̃

T∏

t=0

f̃t(W ), (4.98)

where f̃0(W ) = f0(W ) and for t = 1, . . . , T

f̃t(W ) =
(

2π|C̃t|
)−N/2

exp

[
−1

2

∑

ij

(Wi − µ̃ti)(C̃t)−1
ij (Wj − µ̃tj)

]
. (4.99)

As before, we introduce the ’cavity’ distributions:

q\t(W ) =
q(W )

f̃t(W )
= N (µ\t,C\t), (4.100)

where

C\t = (C−1 − (C̃t)−1)−1, µ\t = C\t · (C−1 · µ− (C̃t)−1 · µ̃t). (4.101)

We then update the approximate posterior by matching its first and second
moments with the ones of the distribution

1

Zt
ft(W )q\t(W ).
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Those moments can be calculated by derivatives of the generating functional

Zt(ψ) =

∫
dWq\t(W )ft(W )e

∑
jWjψj

=
(
2π|C\t|

)−N/2 ∫
dWe−

1
2

∑
ij(Wi−µ\ti )(C\t)−1

ij (Wj−µ\tj )

e
βσi(t)

1√
N

∑
jWjσj(t−1)

2 cosh β√
N

∑
jWjσj(t− 1)

e
∑
jWjψj

=
(
2π|C\t|

)−N/2 ∫ Dφ dg dĝ eβσi(t)g

2 cosh βg

e
−iĝ

[
g− 1√

N
µ\t·σ(t−1)− 1√

N
ψ·C\t·σ(t−1)−φ

]
e

1
2
ψ·C\tψ+µ\t·C\t

(4.102)

in the limit ψ → 0, where Dφ =
(

N
2πσ(t−1)·C\t·σ(t−1)

)N/2
e
−φ2

2
N

σ(t−1)·C\t·σ(t−1) .

The calculation of the first moment yields:

µj = µ
\t
j +

β√
N

∑

k

C
\t
jkσk(t− 1)

[
σ(t)− 〈tanh(βh\t)ft(ht)〉\t

〈ft(ht)〉\t

]
, (4.103)

where the average is a over the gaussian field with variance

(σ(t− 1) ·C\t · σ(t− 1))/N

and mean

γ\t =
1√
N

∑

j

σj(t− 1)µ
\t
j . (4.104)

For the second moments we get

Cij = C
\t
ij +

β2

N

∑

kl

C
\t
ikC

\t
lj σk(t− 1)σl(t− 1)

[〈tanh2(βh\t)ft(ht)〉\t
〈ft(ht)〉\t

− 1

]
.

(4.105)

As last step of the iteration, one evaluates and store the new factors f̃t(W )
(4.99), whose first two moments satisfy the following equations:

C̃t = (C−1 − (C\t)−1)−1, µ̃t = C̃t · (C−1 · µ− (C\t)−1 · µ\t). (4.106)

4.H Details of the replica calculation

It is convenient to split the computation of the free energy into two parts. The
first one represents the weight of the coupling vectors W which are constrained
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by the order parameters:

F0 = − lim
n→1

∂

∂n
N−1 lnZn

c , (4.107)

with

Zn
c =

∫ ∏

a

dW ae−
1
2

∑
aW

a·Wa
∏

a<b

∫
dq δ

(∑

ij

W a
i CijW

b
j −Nq

)

=

∫ ∏

a

dW ae−
1
2

∑
aW

a·Wa
∏

a<b

∫
dq
dq̂

2π
e−

q̂
2{∑ijW

a
i CijW

b
j−Nq}.

(4.108)

Note, there is no need to introduce extra conditions on diagonal overlaps as
they are taken care of by the prior. As we did in the Paper, we can decouple
the integrals over different spins by diagonalising C = UΛU> and transforming
to new variables U>W a → W a which we give just the same name. Hence

Zn
c =

∫ ∏

a

dW ae−
1
2

∑
a

∑
i(W

a
i )2
∏

a<b

∫
dq
dq̂

2π
e−

q̂
2{∑iW

a
i ΛiW

b
i −Nq}. (4.109)

Once the sites are decoupled we consider the limit N → ∞ and evaluate the
integral with the saddle point method. We get the following result, where we
write Zn

c as a function of the parameters q, q̂; the physical value of the free
energy will be then obtained by extremization over q, q̂:

1

N
lnZn

c (q, q̂) =
1

N

∑

i

ln

∫ ∏

a

dW ae−
1
2

∑
a(Wa)2

e−
q̂Λi
2

∑
a6=b(W

aW b−q)

=
q̂qn(n− 1)

2

1

N

∑

i

Λi +
1

N

∑

i

ln

∫
Dz

(
1√

2π(1− q̂Λi)
e
− 1

2

q̂Λiz
2

1−q̂Λi

)n

=
q̂qn(n− 1)

2

1

N
Tr(C)− n− 1

2N
Tr(ln(I − q̂C))− 1

2N
Tr(ln[I + (n− 1)q̂C]).

Using 1
N

TrC = 1 and (4.107) one finds:

F0(q, q̂) = −1

2
q̂(q − 1) +

1

2N
Tr(1− q̂C) (4.110)

The second term of the free energy involves averages over the Gaussian random
fields (4.44). Its computation follows the steps of standard calculations for the
perceptron learning problem [EVdB01,OK96,NY96] and the result is written
in (4.47).
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5 Learning Curves for the inverse
Ising problem

5.1 Introduction

Having discussed the average performance of inference algorithms for the ki-
netic Ising model in the previous chapter, we will now examine the corre-
sponding problem for the equilibrium case. We aim to compute the average
error of learning the couplings from independent data generated by the equi-
librium Ising model. As exact inference via the maximum likelihood method
is computationally intractable for large systems, a vast amount of literature
has been devoted to design approximate inference algorithms (for a review,
see [NZB17b]).

As for numerical approaches, Monte Carlo methods can be exploited in a
maximum likelihood algorithm [FS88,BDT+07] or be used to directly sample
from the posterior probability distribution of the parameters [Fer16].

Mean field analytical approximations to likelihood maximization have been
derived by information geometric approaches [Tan00], cavity methods [OW01b],
weak-coupling expansions [Ple82]; a related technique is based on a pertur-
bative expansion of the entropy functional in terms of connected correla-
tions [SM09]. These approaches are exact in the thermodynamic limit for
densely and weakly interacting systems, but constitute a poor approximation
when the couplings are strong.

An approximation that is valid also for networks with strong couplings was
developed by [CM11,CM12]. It consists in constructing and selecting specific
subsets of variables of increasing size, called clusters. The algorithm retains
the clusters of variables contributing most to the cross-entropy and rejects the
small contributions. It works well when the networks have many short loops.

In the opposite limit, i.e. for networks with no loops, the Bethe-Pearls
ansatz [Pei36] of pair-wise factorised form for the spin distribution is exact; it
can be used within a variational approximation to reconstruct the couplings;
it is exact on trees but can be also used on networks that are locally tree-like
[Bet35]. A related method is a message passing algorithm called susceptibility
propagation, which combines belief propagation [Pea14] and linear response
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theory [NB12a]. Its performance is investigated in [NB12a,MVK10].

Based on very different approaches, two consistent estimators for the cou-
plings are given by minimum probability flow [SDBD09] and pseudolikelihood
maximisation. The latter method, inspired by logistic regression, was de-
veloped in the statistics community [Bes74] and recently became very popu-
lar within the physics community [AE12, Bes74, ELL+13, MDP14]. The log-
likelihood function to be maximised is replaced by a tractable sum of local log-
likelihood functions (i.e., distributions of single random variables conditioned
on the others). With respect to exact maximum likelihood, the computational
complexity is reduced from exponential to polynomial in the system size (and
in the sample size). Moreover, it outperforms most of the methods cited above
at low temperatures [AE12,NZB17b].

In this chapter, we provide a setting for a theoretical comparison of the
performance of some of these algorithms. We compute the average error of
learning the couplings in the teacher-student scenario, where the teacher net-
work will be kept fixed during the calculation. As we saw in the last chapter,
the computation requires performing ’thermal’ averages over student couplings
and quenched averages over the spin configurations. Such configurations are
distributed according to the Boltzmann measure, and the intractability of the
partition function constitutes the main technical difficulty. A first approach
to this problem was published in [KKC98], a work that analyses the perfor-
mance of various online algorithms for learning the parameters in a spin glass
from data about its metastable states. The authors, inspired by the work of
Palmer and Pond [PP79], considered an approximation for the distribution of
local fields that factors in the sites. They showed that it is possible to learn
the Hamiltonian from a small set (O(N)) of metastable states; however, the
reconstruction error does not match well with the one from simulations due to
the crude approximation on the field distribution.

In Paper 3, using ideas from the cavity methods of statistical physics [MPV87],
we develop a formalism that takes into account the correlations between local
fields; in this way, we are able predict the error with great accuracy for the first
time. An alternative approach, based on a replica calculation, can be found
in [Ber16]. Our method allows us to simply study the performance of algo-
rithms based on the minimisation of a local cost function, such as maximum
pseudolikelihood and a mean-field approximation to maximum likelihood.1

We also derive the form of the optimal local cost function that achieves
minimal error. The formalism to address this problem dates to the study of
one-layer perceptrons, when Kinouchi and Caticha (1992) presented a modi-

1Another recently proposed algorithm based on convex optimization is interaction screening
[VMLC16]; its performance has been analysed in [Ber16].
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5.2 Paper 3

fied version of the Hebb algorithm for the one-layer perceptron that minimises
the generalisation error. We follow the more recent approach of [AG16] (in-
troduced for the problem of optimal regression and followed in [Ber16] for the
inverse Ising problem) and perform a functional minimisation of the error with
respect to the cost function.

Our results will depend on parameters related to the statistics of the network
that generated the data; in the last part of the chapter, we will show how such
parameters can be estimated from the data.

The explicit equations for maximum likelihood and maximum pseudo-likeliood
are given in Appendix 5.A.

5.2 Paper 3.

Author’s contribution: I performed the analytical and numerical calcula-
tions, prepared the figures and contributed to writing the paper.
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1.  Introduction

In recent years, there has been an increasing interest in applying classical Ising mod-
els to data modelling. Applications range from modelling the dependencies of spikes 
recorded from ensembles of neurons [1, 2] to protein structure determination [3] or 
gene expression analysis [4]. An important issue for such applications is the so-called 
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inverse Ising problem, i.e. the statistical problem of fitting model parameters, external 
fields and couplings, to a set of data. Unfortunately, the exact computation of statisti-
cally ecient estimators such as the maximum likelihood estimator is computationally 
intractable for large systems. Hence, to overcome this problem researchers have sug-
gested two possible solutions: the first one tries to approximate maximum likelihood 
estimators by computationally ecient procedures such as Monte Carlo sampling [5] 
or mean field types of analytical computations, see e.g. [6–9]. A second line of research 
abandons the idea of maximising the likelihood function and replaces it by other cost 
functions which are easier to optimise. The most prominent example is the so-called 
pseudo-likelihood method [10–14]. In general it is not clear which of the two methods 
leads to better reconstruction of an Ising model. The quality of such estimators, e.g. 
measured by the mean squared reconstruction error of network parameters, will depend 
on the problem at hand.

As an alternative to analysing specific instances of problems, one may study the 
typical prediction performance of algorithms assuming that the true Ising parameters 
are drawn at random from a given ensemble distribution. For such random prob-
lem cases, one can apply powerful methods of statistical physics to compute (scaled) 
reconstruction errors exactly in the limit where the number of spins grows to infinity 
and the number of data is increased proportionally to the number of spins. Such an 
approach has been applied extensively to statistical learning in large neural networks 
in the past [15–17] and also to learning in an Ising spin glass with binary teacher cou-
plings [18], where learning is performed in an online fashon. In a previous paper [19] 
we have applied this method to the learning from dynamical data which are modelled 
by a kinetic Ising model with random independent couplings. This problem is theor
etically simpler compared to the static, ‘equilibrium’ Ising case discussed in the present 
paper. This is because the spin statistics of the dynamical model is fairly simple in the 
‘thermodynamic’ limit of a large network and gives rise to Gaussian distributed fields.

We will show in the following that a related approach is possible to data drawn 
independently from an equilibrium Ising model when we assume that couplings are 
learnt independently for each spin using local cost functions. Although the spin statis-
tics is more complicated, computations are possible, when the so-called ‘cavity’ method 
[20] is applicable to the true teacher Ising model.

The paper is organised as follows: section  2 explains the inverse Ising problem 
and maximum likelihood estimation. Section  3 introduces simpler estimators which 
are derived from local cost functions. In section  4, we review the statistical phys-
ics approach for analysing learning performances within the so-called teacher student 
scenario. In section 5 we explain the cavity method for performing quenched averages 
over spin configurations. Section 6 presents explicit results of our method applied to 
the inverse Ising model with independent Gaussian couplings (SK-model). In section 7 
we study the learning performance of algorithms based on local quadratic cost func-
tions and we compute the optimal local quadratic cost function. In section 8 we show 
that an optimal quadratic function provides the best local estimator for the couplings. 
Section 9 introduces further applications of the cavity method which allow us to sim-
plify order parameters corresponding to the true teacher couplings. As an example, 
we compute the reconstruction error for an Ising model with Wishart distributed, i.e. 
weakly dependent couplings. The method is also applied to re-derive a simple mean 
field approximation to the maximum likelihood estimator. Section 10 explains how the 



a statistical physics approach to learning curves for the inverse Ising problem

4https://doi.org/10.1088/1742-5468/aa727d

J. S
tat. M

ech. (2017) 063406
mean field estimator can be obtained from a local cost function and presents results for 
the reconstruction errors. Section 11 discusses the asymptotics of the reconstruction 
errors for large number of data and relates these results to expressions known from clas-
sical statistics. Section 12 contains comparisons of our results with those of simulations 
of the estimators and section 13 presents a summary and an outlook.

2. Estimators for the inverse Ising model

Let us consider a system of N binary spin variables σ = (σ0, . . . , σN−1) connected by 
pairwise interactions Jij and subject to external local fields Hi. The probability distribu-
tion of the spin set is given by the Boltzmann equilibrium distribution

P (σ|J ,H) = Z−1
Ising exp

[
β
∑

i<j

Jijσiσj + β
∑

i

Hiσi

]
,� (1)

where ZIsing is the partition function and β is the inverse temperature. Given a set of 
M independent observations {σk}Mk=1 drawn independently from (1), the inverse Ising 
problem consists of estimating the model parameters H and J from the data. A stan-
dard approach for parameter estimation is the maximum likelihood (ML) method, 
which has the properties of consistency and asymptotic eciency [21]. Maximum like-
lihood can be formulated as the minimisation of the following cost function (negative 
log-likelihood)

EML(J ,H) = −
M∑

k=1

lnP (σk|J ,H)� (2)

with respect to the matrix of couplings J and the field vector H. As is well known, the 
minimisation of (2) is equivalent to a simple set of conditions for the first and second 
moments of the ensemble (1) of spins: the parameters estimated by ML lead to the 
matching of the empirical (data averaged) magnetisations to the magnetisation given 
by the model (1). Likewise we have the matching of all empirical pair correlations of 
spins with their model counterparts. Despite the simplicity of this rule, the practical 
minimisation of (2) requires the computation of these spin moments for a given set of 
couplings and fields which is equivalent to averaging over 2N spin configurations, which 
is intractable for larger N. An approximation of such averages by Monte Carlo sampling 
is possible but requires sucient time for equilibration. Alternatively, dierent approx
imation techniques have been developed to provide a good estimate of the parameters 
at a smaller computational cost, see e.g. [8, 9, 11, 12, 22–25].

3. Local learning

If we neglect the symmetry of coupling matrix, i.e. the equality 
Jij = Jji, we can develop estimators which learn the ‘ingoing’ coupling vectors Jij for  
j = 0, . . . , i− 1, i+ 1, . . . , N − 1 for each spin σi independently. It turns out that the 
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corresponding (local) algorithms can often be performed in a much more ecient 
way compared to the ML method.

In the following we will concentrate on the estimation of the couplings only and set 
the external fields Hi to zero. We will specialise on the couplings for spin σ0 and assum-
ing that the typical couplings Jij are variables with magnitude scaling like 1/

√
N  for 

large N. We define a vector of rescaled couplings (weights) as

W = (W1, . . . ,WN−1)
.
=

√
N(J01, . . . , J0N−1).� (3)

We will assume that an estimator for W  is defined by the minimisation of a cost 
function

E(W ) =
M∑

k=1

E(W ;σk)� (4)

which is additive in the observed data. An important and widely used case is the 
pseudo-likelihood approach, where the cost function

E(W ;σ) = − lnP (σ0|σ\0,W )

= −βσ0

∑

j �=0

Wjσj√
N

+ ln

(
2 cosh β

∑

j �=0

Wjσj√
N

)
� (5)

is given by the negative log-probability of spin σ0 conditioned on all other spins σ\0. 
In contrast to the ML approach, the gradient of this function can be computed in an 
ecient way.

4. Teacher–student scenario and statistical physics analysis

We assume in the following that data are generated independently at random from 
a ‘teacher’ network with coupling matrix J∗

ij. A local learning algorithm based on 
the minimisation of (4) produces ‘student’ network couplings W  as estimators for 
the teacher network couplings W ∗ =

√
N(J∗

01, . . . , J
∗
0N−1). To measure the quality of a 

given local learning algorithm, we will compute the average square reconstruction error 
given by

ε = N−1(W ∗ −W )2 = Y − 2ρ+Q,� (6)
where we define order parameters

Y = N−1(W ∗)2 Q = N−1(W )2 ρ = N−1W ∗ ·W ,� (7)
representing, respectively, the squared lengths of the teacher and student coupling vec-
tors and the overlap between teacher and a student coupling vectors. Here the overline 
defines an expectation over the ensemble of M = αN  training data drawn at random 
from an Ising model with teacher couplings J∗, i.e.

(. . . ) =
∑

σ1,...,σM

M∏

k=1

P (σk|J∗)(. . . ).� (8)
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Since there is often no explicit analytical solution to the minimisers W  of (4), we will 
resort to a statistical physics approach which has been successfully applied to the analy-
sis of a great variety of problems related to learning in neural networks [15–17]. In this 
approach one defines a statistical ensemble of student weights by a Gibbs distribution [26]

p(W ) =
1

Z
exp[−νE(W )],� (9)

with the partition function

Z =

∫
dW exp[−νE(W )],� (10)

where 1/ν represents an eective temperature which controls the fluctuations of the 
‘training energy’ E(W ). Using techniques from statistical physics of disordered sys-
tems one computes order parameters at nonzero temperature and performs the limit 
ν → ∞ at the end of the calculation. The ‘thermal average’ 〈W 〉 with respect to the 
distribution (9) converges to the minimiser of the cost function E(W ). Order param
eters can be extracted from the quenched average of the free energy F corresponding to 
(8) using the replica method:

F = −N−1ν−1lnZ = − lim
n→0

N−1ν−1 ∂

∂n
lnZn,� (11)

where the average replicated partition function for integer n is given by

Zn =

∫ n∏

a=1

dW a

{∑

σ

P (σ|J∗) exp[−ν
n∑

a=1

E(W a;σ)]

}αN

.� (12)

To allow for an analytical treatment, we assume that the local cost function E(W a;σ) 

depends on the spins and couplings only via σ0 and the local field h
.
= 1√

N

∑
j �=0 Wjσj 

in the following way:

E(W ;σ) = Φ(σ0h).� (13)
Obviously, the pseudo-likelihood cost function (5) belongs to this class of functions. 
The goal of the following section  is to perform the expectation (12). The resulting 
expression depends on a set of order parameters and can for integer n be evaluated by 
standard saddle-point methods in the limit N → ∞. Performing an analytical continu-
ation for n → 0 yields both the free energy and the self-averaging values of these order 
parameters. While in most previous applications [15–17] of this programme to learn-
ing in neural networks, the quenched average over data in (12) is straightforward, the 
required average over Ising spin configurations drawn from the distribution (1) cannot 
be performed (for arbitrary N) in closed form. One might attempt a solution to this 
problem by introducing a second set of replicas which would deal with the partition 

function Z−1
Ising in the denominator of (1). We expect that such an approach can be car-

ried out for random teacher couplings but may lead to complicated expressions which 
have to be carefully evaluated for N → ∞. In the next Section we will use a simpler 
approach using ideas of the cavity method [20] which allows, under certain assump-
tions on the teacher coupling matrix J∗, the explicit computation of the quenched 
average for N → ∞.



a statistical physics approach to learning curves for the inverse Ising problem

7https://doi.org/10.1088/1742-5468/aa727d

J. S
tat. M

ech. (2017) 063406
5. Cavity approach I: quenched averages

In order to perform the quenched averages in (12), we will combine the replica approach 
with ideas of the so-called cavity method. In doing so we write the Gibbs distribution 
(1) corresponding to the teacher couplings in the form

P (σ|J∗) ∝ exp

[
βσ0

∑

j �=0

J∗
0jσj

]
Pcav(σ\σ0),� (14)

where Pcav denotes the distribution of the remaining spins in a system where the spin 
σ0 was removed, creating a cavity at this site, which gives the method its name. The 

replicated partition function depends only on the fields ha
.
= 1√

N

∑
j �=0 W

a
j σj where 

a ∈ {∗, 1, . . . , n}. The cavity assumption for the statistics of such fields in densely con-
nected systems can be summarised as follows: in performing expectations over Pcav, 
we can assume that dependencies between spins are so weak that random variables ha 
become jointly Gaussian distributed in the limit N → ∞. Hence, the joint distribution 
of spin σ0 and the fields can be expressed as

P (σ0, h∗, h1, . . . hn) =
1

Z0

eβσ0h∗pcav(h∗, h1, . . . hn)� (15)
with the normalisation

Z0 = 2

∫
cosh(βh∗)pcav(h∗)dh∗.� (16)

Assuming that in absence of external fields we have vanishing magnetisations (para-
magnetic phase), the distribution pcav(h∗, h1, . . . hn) is a multivariate Gaussian density 
with zero mean and covariance

〈hahb〉 =
1

N

∑

i,j �=0

W a
i C

\0
ij W

b
j .� (17)

The matrix C\0 is the correlation matrix of the reduced spin system (without σ0), which 

does not depend on the couplings W ∗. We have C
\0
ii = 1 and assume that typically 

C
\0
ij = O( 1√

N
) for i �= j and large N. However, this scaling does not mean that we can 

neglect the non-diagonal matrix elements. We will later see that they give nontrivial 
contributions to the final reconstruction error. Within this framework, the quenched 
average in (12) is rewritten in terms of integrals over the random variables ha as follows:

∑

σ

P (σ|J∗) exp[−ν
n∑

a=1

E(W a;σ)]

=
∑

σ0

∫
dh∗

n∏

a=1

dha
1

Z0

exp [βσ0h∗] exp

[
−ν

n∑

a=1

Φ(σ0ha)

]
pcav(h∗, h1, . . . hn).

�

(18)

This result can be expressed by the covariances (17) which in the limit N → ∞ will 
become self averaging order parameters which will be computed by the replica method 
(appendix A). Under the assumption of replica symmetry (which is expected to be 
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correct for convex cost functions, which holds e.g. in the case of pseudo-likelihood), 
these new order parameters and their physical meaning are denoted as:

V
.
=

1

N

∑

i,j �=0

W ∗
i C

\0
ij W

∗
j

R
.
=

1

N

∑

i,j �=0

W ∗
i C

\0
ij 〈Wj〉w =

1

N

∑

i,j �=0

W ∗
i C

\0
ij W

a
j a �= ∗,

q0
.
=

1

N

∑

i,j �=0

〈WiWj〉w C
\0
ij =

1

N

∑

i,j �=0

W a
i C

\0
ij W

a
j a �= ∗,

q
.
=

1

N

∑

i,j �=0

〈Wi〉w C
\0
ij 〈Wj〉w =

1

N

∑

i,j �=0

W a
i C

\0
ij W

b
j a �= b �= ∗,

�

(19)

where the brackets 〈. . .〉w denote averages with respect to the distribution of   
couplings (9).

6. Replica result

Using a replica symmetric ansatz, the computations follow the approach summarised in 
appendix A. In the zero temperature limit ν → ∞ the fluctuations of student couplings 
vanish and we obtain the convergence of the order parameters q0 → q with the limiting 
‘susceptibility’ 

x
.
= lim

ν→∞
(q0 − q)ν = lim

ν→∞
ν

N

∑

i,j �=0

(
〈WiWj〉w − 〈Wi〉w 〈Wj〉w

)
C

\0
ij

remaining finite and nonzero. As a main result, we find that the auxiliary order param
eters (19) are obtained by extremizing the limiting free energy function

F = − extr
q,R,x

{
1

2

q −R2/V

x
+ α

∫
dv GβR,q(v) max

y

[
−(y − v)2

2x
− Φ(y)

]}
,

�

(20)
where Gµ,ω(v) denotes a scalar Gaussian density with mean μ and standard deviation 
ω. Remarkably, this free energy does (for any fixed cost function Φ) only depend on the 
teacher couplings J∗ via the order parameter V, defined in equation (19). To compute 
the prediction error, however, we need the ‘original’ order parameters (7). These can be 
expressed by the auxiliary ones q, R and x. This relation can be derived from the free 
energy (appendix C) in a standard way by adding corresponding external fields to the 
‘Hamiltonian’ in the Gibbs free energy (9). This relation brings back further statistics 
related to the teacher couplings J∗ via

ρ =
RY

V
,

Q = (q − R2

V
)
1

N
TrC−1 +

R2Y

V 2
,

� (21)

with the corresponding reconstruction error
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ε = (q − R2

V
)
1

N
TrC−1 + Y (1− R

V
)2.� (22)

In deriving these results, we have also assumed that for N → ∞, 1NTr(C\0)−1 → 1
N
Tr(C)−1. 

Note that the prediction error is larger than the one we would get if we had neglected 
the o-diagonal elements of the correlation matrix C\0. The error (22) depends on the 
teacher couplings J∗ through the parameter Y and the parameter V (the cavity variance   
of the teacher field) and through the trace of the inverse correlation matrix C   
corresponding to the teacher’s spin distribution. We will show later that the latter 
quantity can be expressed by the former using a second application of the cavity 
method. In the next section, we will see that the parameter V can be estimated from 
the data.

We will illustrate the result (22) for the case of random teacher couplings J∗
ij drawn 

independently for i  <  j from a Gaussian density of variance 1. This corresponds to the 
celebrated Sherrington–Kirkpatrick (SK) model [27]. For β < 1, i.e. outside of the spin-
glass phase, our simple form of the cavity arguments are known to be correct [20] and 
one finds the values

V = Y = 1,

lim
N→∞

1

N
Tr(C)−1 = 1 + β2,

� (23)

for zero magnetisations mi  =  0 in the literature [28]. A comparison of the theory (22) 
with numerical simulations is shown in section 12.

7. Quadratic cost functions

Among the simplest functions satisfying the property (13), we consider quadratic cost 
functions of the form

Eη(W ) =
1

2

∑

i �=0,j �=0

WiĈijWj − η
√
N

∑

j �=0

Ĉ0jWj,� (24)
where the empirical correlation matrix is defined as

Ĉij
.
=

1

M

M∑

k=1

σk
i σ

k
j .� (25)

These allow for an explicit computation of the estimator in terms of a matrix inversion. 
The estimator minimizing (24) is given by

W η
i = η

√
N

∑

j �=0

(Ĉ−1
−0 )jiĈ0j i �= 0,

� (26)
where the matrix Ĉ−0 is the submatrix of Ĉ  where the 0th column and 0th row are 
deleted (not to be confused with the cavity matrix C\0) and η is a free parameter. The 
estimation error can be computed from the free energy (20) by setting
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Φ(h) =
h2

2
− ηh,� (27)

and gives (see appendix D)

ε =

(
βη

1 + β2V
− 1

)2

Y +
η2

(α− 1)(1 + β2V )

1

N
TrC−1.� (28)

The optimal choice for the quadratic cost function (24) is found by fixing the parameter 
η to the value that minimizes the error (28), namely

ηopt =
(α− 1)(1 + β2V )βY

(α− 1)β2Y + (1 + β2V ) 1
N
TrC−1

,� (29)

with the corresponding minimal error

εopt =
(1 + β2V )Y 1

N
TrC−1

(α− 1)β2Y + (1 + β2V ) 1
N
TrC−1

.� (30)

In general, the computation of the optimal parameter ηopt requires the knowledge of 

the three parameters Y, V and 1
N
TrC−1  which characterise the statistical ensemble to 

which he unknown teacher matrix J∗ belongs. However, (29) simplifies as α → ∞ and 
we get

lim
α→∞

ηopt =
1 + β2V

β
.� (31)

We will now show that the remaining parameter V can be estimated from the observed 
data. We use the fact that at its minimum, the cost function (24) equals

Eη(W
η) = −N

2
η2∆,� (32)

where we have used (26) and defined

∆ =
∑

i �=0,j �=0

Ĉ0i(Ĉ
−1
−0 )ijĈ0j,� (33)

which only depends on the spin data. On the other hand in the situations where our 
statistical physics formalism applies, the minimal training energy (32) will be self-aver-
aging in the thermodynamic limit N → ∞ and can be computed as the zero temperature 
limit of the free energy, i.e. the free energy function (20) evaluated at the stationary 
values of the order parameters. The calculation in (appendix D) yields

∆ =
1 + αβ2V

α(1 + β2V )
.� (34)

This shows, that the unknown parameter V and the asymptotically optimal parameter 
η can be directly estimated from the observed spin correlations.

In the next section, we will show that the optimal quadratic cost function yields in 
fact the total optimum of the reconstruction error with respect to free variations of the 
cost function Φ.
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8. The optimal local cost function

In this section, we will derive the form of the optimal local cost function Φ within the 
cavity/replica approach and show that it is quadratic. Hence, the results of the previ-
ous section can be applied, where the optimal quadratic cost function was already com-
puted. We will give a derivation of this fact for the case of finite inverse ‘temperature’ 
ν, assuming that the argument can be continued to ν → ∞.

The optimisation of cost functions for learning problems within the replica approach 
goes back to the work of Kinouchi and Caticha [29]. We will follow the framework of [30] 
(see also [31]). Our goal is to minimise an error measure for a learning problem which is 
of the form ε(R, q, q0) such as (22). It depends on order parameters which are computed 
by setting the derivatives of a free energy function FΦ(R, q, q0) (such as A.10) equal to 
zero. The main idea is to take these conditions into account within a Lagrange function

ε(R, q, q0) +
∑

S∈R,q,q0

λS
∂

∂S
FΦ(R, q, q0),� (35)

where the λS are the corresponding Lagrange multipliers. The optimal function Φ is 
obtained from the variation

δ

δΦ

∑

S∈R,q,q0

λS
∂

∂S
FΦ(R, q, q0) = 0.� (36)

For our problem, we can write (see (A.2) and (A.10))
FΦ(R, q, q0) = F0(R, q, q0)−

α

ν

∫
GβR,q(v) lnΨq0−q(v)dv,� (37)

where F0(R, q, q0) is independent of Φ and Gµ,ω(v) denotes a scalar Gaussian density 
with mean μ and standard deviation ω. The free energy depends on Φ through the 
function

Ψq0−q(v)
.
=

∫
Gv,q0−q(y) e

−νΦ(y)dy.� (38)
We will first derive a condition on the form of the optimal function Ψ from the variation

δ

δΨ

∑

S∈R,q,q0

λS
∂

∂S

∫
GβR,q(v)Ψq0−q(v)dv = 0.� (39)

From this, we will recover the form of the optimal Φ. To obtain the derivatives with 
respect to the order parameters we use the following rules for expectations over Gaussian 
measures, which can be easily derived using integration by parts

∂

∂µ

∫
Gµ,ω(v)f(v)dv =

∫
Gµ,ω(v)∂vf(v)dv,� (40)

∂

∂ω

∫
Gµ,ω(v)f(v)dv =

1

2

∂2

∂µ2

∫
Gµ,ω(v)f(v)� (41)



a statistical physics approach to learning curves for the inverse Ising problem

12https://doi.org/10.1088/1742-5468/aa727d

J. S
tat. M

ech. (2017) 063406

=
1

2

∫
Gµ,ω(v)∂

2
vf(v)dv.� (42)

Hence, the derivatives required for (39) are

d

dR

∫
GβR,q(v) lnΨq0−q(v)dv = β

∫
GβR,q(v) ∂v lnΨq0−q(v)dv,� (43)

d

dq0

∫
GβR,q(v) lnΨq0−q(v) =

1

2

∫
GβR,q(v)

∂2
vΨq0−q(v)

Ψq0−q(v)
dv

=
1

2

∫
GβR,q(v)

{
∂2
v lnΨq0−q(v) + (∂v lnΨq0−q(v))

2} dv,
�

(44)

d

dq

∫
GβR,q(v) lnΨq0−q(v)dv =

β2

2

∫
GβR,q(v) ∂

2
v lnΨq0−q(v)dv

− d

dq0

∫
GβR,q(v) lnΨq0−q(v)dv.

�
(45)

An application of standard variational calculus to a linear combination of these order 
parameter derivatives shows that

∂v lnΨq0−q(v) = c1 + c2∂v lnGβR,q(v),� (46)
where c1,2 are independent of v. Since the logarithm of the Gaussian density lnGβR,q(v) 
is a quadratic function in v, we conclude that also lnΨq0−q(v) is a quadratic expression 
in the variable v, making Ψq0−q(v) a (non-normalised) Gaussian density.

To conclude our argument on the optimal form of Φ, we use relation (38). This 
shows that the Gaussian density Ψq0−q(v) is the convolution of a (non-normalised) 
Gibbs density e−νΦ(y) of a random variable y with the density Gv,q0−q(y) = Gy,q0−q(v) 
of a Gaussian random variable v. As a convolution corresponds to the addition two 
random variables, we know that v  +  y is also a Gaussian random variable. Since v is 
Gaussian, then e−νΦ(y) is also a Gaussian density and Φ(y) is quadratic in y. We have 
a already computed the best quadratic cost function in the previous Section, and we 
conclude that the estimator (26) with (29) is the best local estimator of the couplings.

9. Cavity approach II: TAP equations and approximate mean field ML estimator

So far we have ignored the symmetry of the coupling matrix by restricting ourselves 
to estimators derived from local cost functions. In this Section, we will discuss a well 
known approximation [32] of the (symmetric) maximum likelihood estimator which is 
based on mean field theory. We will re-derive this estimator using the more advanced 
(adaptive) TAP mean field theory, because its results for the spin correlation matrix 
will also be needed in the following. We will later compute its reconstruction error in 
section 10. Our starting point is a generalisation of the well known TAP mean field 
approach developed for the SK model. Using the cavity approach [32] one derives the 
following ‘adaptive’ TAP equations for the magnetisations
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mi = tanh

(
β
∑

j

Jijmj − β2Vimi + βHi

)
,� (47)

where

Vi =

〈{∑

j

Jij(σj − 〈σj〉\i)
}2〉

\i
� (48)

is the variance of the cavity field at spin i. Using a linear response argument (i.e. by 
taking the derivative of mi equation (47) with respect to Hj), one obtains the following 
cavity approximation to the susceptibility χij = Cij −mimj, i.e. the covariance matrix 
of the spins:

χ(J) = (Λ− βJ)−1 ,� (49)
where the diagonal matrix Λ has elements

Λii = β2Vi +
1

χii

= β2Vi +
1

1−m2
i

.� (50)
From this result, we can draw the following conclusions:

	 (i)	Writing the moment matching conditions for the maximum likelihood estimator 
as

Cij(J)
.
= 〈σiσj〉 = Ĉij

.
=

1

M

M∑

k=1

σk
i σ

k
j� (51)

		  and specialising to the paramagnetic case Hi = mi = 0, we have C(J) = χ(J). 
Hence, the cavity approximation (49) yields the mean field (MF) estimator given 
by [6]

JMF
ij = − 1

β

(
Ĉ

−1
(J)

)
ij

for i �= j.� (52)

		 At first glance, this simple and explicit form of a (symmetric) coupling estimator 
does not seem to fit into the framework developed in this paper. Surprisingly, we 
will derive a local cost function in the next section which allows for the computa-
tion of the reconstruction error using the statistical physics approach.

	 (ii)	 Inverting (49) and using (50) for mi  =  0, we get an expression for the trace of the 
inverse spin correlation matrix in terms of the variances of the cavity fields at all 
spins which is given by

1

N
TrC−1 =

β2

N

∑

i

Vi + 1.� (53)
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		  If we assume that the teacher couplings J∗ can be viewed as generated from a 

random matrix ensemble for which the Vi become self-averaging, i.e. Vi ≡ V  as 
N → ∞ we finally obtain the simple result

lim
N→∞

1

N
TrC−1 = β2V + 1.� (54)

		 With this result, we can eliminate another unknown parameter of the teacher’s 
ensemble of couplings, as we have shown that V can be estimated from the 
observed spin data, see (33) and (34).

		 Equation (54) agrees with the special result (23) for the SK model, since the 
‘Onsager correction’ in the TAP equations  for the SK model gives V  =  1. As 
an application of the general result (54), we present numerical results for the 
reconstruction error for the Wishart ensemble in section 12, where the couplings 
are given by

J∗
ij =

1

N

γN∑

µ=1

ξµi ξ
µ
j� (55)

		  and the ξµj  are independent zero mean Gaussian random variables with unit 
variance. The thermodynamics of this model agrees with that of the celebrated 
Hopfield model of a neural network (where ξµi = ±1) [33], in the phase where 
there is no macroscopic overlap between the spin configurations and a stored 
pattern. Hence, we can read o the cavity variance from the TAP mean field 
equations obtained by [26], setting mi  =  0. One finds

V =
γ

1− β
.� (56)

For other random matrix ensembles which are invariant against orthogonal trans-
formations it is possible to obtain a general expression for the cavity variance in terms 
of the so-called R-transform of the matrix ensemble (for details, see [34, 35]) and can 
be expressed by the limiting eigenvalue spectrum of the matrices.

10. Reconstruction error for MF-ML estimator

We will now turn to the computation of the reconstruction error for the MF-ML esti-
mator (52). At first glance, this estimator does not seem to be related to a local cost 
function in the style of (4). But surprisingly, it is not hard to construct such a function. 
If we specialise again to the estimation of the coupling vector W  corresponding to spin 
σ0, we can simplify the estimator (52) using the matrix inversion lemma [36] in the form

WMF
i =

√
NJMF

0i = −
√
N

β
(Ĉ−1)0i =

√
N

β
φ0

∑

j �=0

(Ĉ−1
−0 )jiĈ0j i �= 0,� (57)
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where

φ0 =
1

1−∑
i,j �=0 Ĉ0i(Ĉ

−1
−0)ijĈ0j

=
1

1−∆
,� (58)

where ∆ was introduced in (33). Assuming as before, that ∆ is self-averaging for 
N → ∞, the mean field estimator is of the form (26) and is associated to a cost func-
tion of the form (24). Hence, the results of section 7 apply. In particular, from (34) and 
(58) we compute

φ0 =
1

1−∆
=

α(1 + β2V )

α− 1
,� (59)

and the estimation error is given by (28) with the parameter ηMF = φ0/β:

εMF =
Y

(α− 1)2
+

α2

β2(α− 1)3
(1 + β2V )

1

N
TrC−1.� (60)

11. Asymptotics

We will now investigate the limiting scaling of the reconstruction error as the number 
of data M grows much larger than the number of parameters (per spin) N to be esti-
mated. This means we consider the limit α → ∞. This is of special interest, because we 
can compare the results obtained by our replica/cavity approach with results derived 
independently by standard arguments of classical statistics. From (30) and (60) and 
appendix E we can see that as α → ∞, the scaling of the reconstruction errors for the 
pseudo-likelihood estimator, the optimal local estimator and the mean field estimator is

ε � c

α
,� (61)

where

cPLM =
1

β2

1∫
dv GβV,V (v)

(
1− tanh2(βv)

)
1

N
TrC−1,

� (62)

cOPT =
1 + β2V

β2

1

N
TrC−1 =

(1 + β2V )2

β2
,� (63)

cMF−ML = cOPT,� (64)
where in the second equality of the second line, we have used (54). Hence, asymptoti-
cally the simple mean field estimator and the optimal estimator converge to the true 
couplings at the same speed. Thus, one might conjecture that the mean field estimator 
is equivalent to the true maximum likelihood estimator in the thermodynamic limit, 
assuming that the cavity approach is correct.
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The validity of the inequality cPLM > cOPT given by (62) and (63) will depend on the 

temperature β and can be established at least for β small enough. For the SK model, 
this region covers the entire paramagnetic phase β < 1 where our simple cavity method 
is valid. However, the dierence between the two is not very large for small β. In fact, 
expanding (62) in powers of β shows that error coecients c for both estimators agree 
up to terms of order β2. One may however argue that the comparison between the two 
estimators is not fair, because the pseudo-likelihood estimator does not yield symmetric 
couplings Jij whereas the mean field one (and hence, asymptotically the optimal one) 
does. One might thus get a better estimate by a final symmetrisation. Unfortunately, 
with our present method, the eect of symmetrisation on the reconstruction error can-
not be computed. We expect that methods of random matrix theory would be needed 
for this. Hence, we postpone a treatment of this problem to future publications. On 
the other hand, preliminary simulations show that the improvement of the pseudo 
likelihood estimator after symmetrisation is rather weak (at least for the systems with 
random couplings studied in this paper). This result is further supported by the fact 
that for small β, the pseudo likelihood estimator is already almost symmetric, a fact 
that can be easily shown, if we expand (5) for small β. The lowest order term yields an 
explicit result which is symmetric.

We want to compare the replica based asymptotics (62), (63) and (64) with exact 
asymptotic expressions for the errors of statistical estimators which are defined by 
the minimisation of smooth cost functions of the type (4), see e.g. [21] or [26] for 
an alternative derivation using replicas. The idea behind such asymptotic results is 
an expansion of the cost function in terms of the parameters W  around the teacher 
parameters W ∗ (assuming convergence to the teacher in the infinite data limit). Setting 

δW
.
= W −W ∗ and using the law of large numbers and central limit arguments one 

can show the following equation for the data averaged correlations

δWiδWj �
1

Nα
[(U−1BU−1)ij] for α → ∞,� (65)

together with δW � 0. The matrices are given by

Uij = 〈∂i∂jE(W ∗;σ)〉 ,
Bij = 〈∂iE(W ∗;σ)∂jE(W ∗;σ)〉 .� (66)

The partial derivatives are with respect to the components of W ∗ and the brackets are 
averages over spins using the distribution P (σ|J∗). For the pseudo-likelihood case, (65) 
can be further simplified. In appendix F, we show that in this case U ≡ −B and we 
finally obtain

ε � N−1
∑

i

(δWi)2 =
1

Nα
TrB−1,� (67)

with

Bij = β2

〈
σiσj

[
1− tanh2(β

1√
N

∑

j �=0

W ∗
0jσj)

]〉
.� (68)
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If we neglect the correlations between σiσj and the field 1√

N

∑
j �=0 W

∗
j0σj for large N and 

note that 〈σiσj〉 = Cij, this result is in agreement with (62).
A similar calculation is possible for the OPT/MF-ML case. Here we get

Uij =
β

φ0N
Cij,

Bij =
β2

φ2
0N

〈σiσjh
2
∗〉+

1

N
Cij − 2

β

φ0N
〈h∗σ0σiσj〉.

� (69)

To obtain the asymptotics of the replica result (63) form these matrices, we assume 
that the dependencies between the random variables σiσj on the one hand and respec-
tively h2

∗ and h∗σ0 on the other hand can be neglected for N → ∞. Using the facts that 
〈h2

∗〉 = β2V 2 + V , 〈h∗σ0〉 = βV  and limα→∞ φ0 = 1 + β2V  finally yields (63) .

12. Numerical results

In the previous sections we saw that the error of any algorithm that infers the network 
couplings by minimizing a cost function of the kind (13) satisfies (22), in the large N 
limit, when the cavity arguments apply. The order parameters are the ones extremiz-
ing the free energy (20). For pseudo-likelihood maximization, the set of equation (B.5) 
for the order parameters has to be solved numerically, whereas for the local optimal 
and MF-ML estimators we computed analytically the error in the form, respectively, 
(30) and (60). Note that the error (22) is expressed in terms of three parameters that 
depend on the distribution of the teacher couplings: Y, V and the trace of the inverse 
correlation matrix C. As an example, we considered the the Gaussian ensemble of the 
SK model, with parameters given by Y  =  1 and relation (23) and the Wishart ensamble 
of (55) with parameters given by Y = γ and relations (54) and (56). Figure 1 compares 
the predicted error with the mean squared error that we get from simulations, as a 
function of α. We show results for the pseudo-likelihood, local optimal and MF-ML 
algorithms applied to the SK and the Wishart model. We only report results for the 
high-temperature (paramagnetic) region, i.e. for β < βc where βc defines the onset of 
spin-glass ordering. In this region, we expect that on the one hand, the cavity argu-
ments are exact and the other hand, the convergence of the spin simulations to the 
thermal equilibrium is suciently fast. For the SK model, we have βc = 1 and for the 
Wishart model βc � 1/(1 +

√
γ) for zero magnetization and small q [37], where q is the 

Edwards-Anderson order parameter. The data are generated by Monte Carlo sampling 
with a burn in time of 107 N spin updates and sampling every 10 N updates, and the 
couplings are recovered either by minimizing the pseudo-likelihood cost function (5) 
using a Newton method or from the empirical correlation matrices: see (26) and (29) for 
the local optimal algorithm and (52) for MF-ML. The plot shows that the replica calcul
ation predicts rather well the results of the simulations for systems of N  =  100 spins. 
In addiction, it is clear that the optimal local algorithm outperforms the other two 
methods and, in the high-temperature regime considered here, the MF-ML algorithm 
performs better than pseudo-likelihood maximization. This performance dierence is 
more relevant for increasing β and in the small α region, whereas it is almost negligible 
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for large α, in agreement with the asymptotic expansions. Finally, we compare the 
analytical results for the asymptotic behavior of the error computed in section 11 with 
the results from simulations. Assuming the scaling (61), we fitted the function ε = c/α 
to the mean squared error of the couplings inferred from simulations at large α. In 
table 1 we show that this ‘experimental’ value of c is consistent with cPLM (62) and 
cOPT = cMF−ML (63) and (64). We then plot the predicted value of c as a function of β in 
figure 2, where we can see that the dierence between pseudo-likelihood maximization, 
the local optimal and MF-ML algorithms is almost indistinguishable and goes to zero 
for small β, as we would expect by noticing that the analytical formula for cPLM (62) 
agrees with cOPT = cMF−ML (63) and (64) up to second order in β. From the plot it is 
also clear that for larger β —i.e. smaller stochasticity of the spins—the error in predict-
ing the couplings is smaller.

The three algorithms show dierent behaviors in the small α region. As the MF-ML 
algorithm relies on the inversion of the correlation matrix (52), that becomes singular 
at α = 1, its error diverges at α = 1, as can be seen from (60). On the contrary, the 
error of the optimal local algorithm shows no divergence, since ηopt = 0 and ε = Y  
at α = 1 (see (29) and (30)). From simulations we also observe that the error of the 
pseudo-likelihood estimator increases for decreasing α and for α < 2 it reaches large 
values, with large variations across trials, while the extremization of the free energy 
(see B.5) fails in the region α < 2. A way to overcome this divergence is to introduce a 
regularizing term in the objective function. We postpone the study of regularized esti-
mators to future work. We present additional plots in appendix G, showing the error 
dependence on the system size.

13. Discussion and outlook

We have presented a statistical physics approach for calculating the reconstruction 
error of algorithms for learning the couplings of large Ising models. Our method assumes 
local cost functions for learning and is based on a combination of the replica trick and 
of cavity arguments for computing quenched averages over spin configurations which 
are drawn at random from a teacher network. A replica symmetric ansatz seems to be 
justified as long as the learning algorithms are based on convex cost functions. The cav-
ity approach assumes a large densely connected network with couplings that are roughly 
of the same size leading to only weakly correlated spins. These assumptions are cor-
rect in the thermodynamic limit for certain statistical ensembles of network couplings 
but may also give good approximations for realistic networks. While our method is so 
far restricted to problems which are realisable by pairwise spin-interactions, it could 
nevertheless be of practical interest in providing approximate statistics for hypotheses 
testing against more complicated network models (having e.g. 3-spin interactions).

Our results show that the learning problem is, at least within our framework, 
surprisingly simple: an explicit estimator based on a quadratic cost function achieves 
minimal error and outperforms the more complicated pseudo-likelihood estimator. This 
optimal estimator only requires prior knowledge of the length of the true coupling 
vector. Moreover, a simple (symmetric) mean field approximation to the maximum 
likelihood estimator is asymptotically optimal and can be computed without such prior 
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knowledge. In the case of the SK model, the region of small β in which these results 
hold covers the entire paramagnetic phase, where our simple cavity arguments are 
known to be valid. It would be interesting to work out analytically how well the mean 
field estimator approximates the exact maximum likelihood estimator in the thermo-
dynamic limit.

Our work is only a first step to an understanding of the typical performance of learn-
ing algorithms for the inverse Ising problem. From a technical point of view our method 
could be generalised in several directions. We have restricted ourselves to models where 
data are sampled from the paramagnetic phase of a teacher network. While it is possible 
to generalise the analysis, the average over samples from a spin-glass phase would usu-
ally require more complex types of cavity arguments [38] which are related to the break-
ing of the replica symmetry of the teacher network. In such a case, the simple Gaussian 
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Figure 1.  The mean squared error of the couplings inferred by using the pseudo-
likelihood algorithm (blue dots) the optimal local algorithm (green dots) and the 
MF-ML algorithm (red dots) is compared to the corresponding average prediction 
error from the replica calculation (continuous lines). The error is plotted as a 
function of α. Four dierent systems are considered: SK model at β = 0.2 (top 
left), SK model at β = 0.8 (top right), Wishart model with γ = 0.25 at β = 0.2 
(bottom left) and Wishart model with γ = 0.5 at β = 0.5 (bottom right). The 
algorithms were tested on a system of N  =  100 spins and the results are averaged 
over 5 realizations of the network and 100 dierent datasets generated from each 
network. Error bars represent standard deviations of the means.
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might expect that now the quadratic cost functions may no longer be optimal (and not 
even consistent) but could be outperformed by a pseudo-likelihood method.

We also expect that our cavity framework could be extended to sparse networks 
as long as the number of nonzero couplings per spin is large enough to allow for the 
application of the central limit arguments used in our work.

After finishing our work we became aware of a recent preprint [31] where similar 
learning problems (focussing on a teacher model with independent Gaussian couplings) 
were studied. The author applied a double replica calculation (the other set of replica 
are used for dealing with the partition function in the quenched average over the spins) 
instead of using cavity arguments. This results in a free energy function which agrees 
essentially with our result (20). However, the order parameters appearing in the free 
energy are not defined by (19) but by (7) instead, and the reconstruction error diers 
from ours. The major dierence is that the result for the error in [31] does not contain 

Table 1.  The values of cPLM (62) for pseudo-likelihood maximization and cMF−ML (64) for the MF-ML algorithm are compared to the results ‘c (simulations)’ we 
obtained by fitting the function ε = c/α to the mean squared error ε of the inferred 
couplings obtained from simulations at large α. We considered two systems: SK 
model at β = 0.6 and Hopfield model with γ = 0.15 at β = 0.6. The algorithms 
were tested on a system of N  =  200 spins for α = 900, 950, 1000 and the results 
are averaged over 5 realizations of the network and 10 dierent datasets generated 
from each network. The errors on c are obtained by propagating the standard 
deviations of ε from simulations.

Model Algorithm c c (simulations)
SK PLM 5.199 5.16± 0.04

MF-ML 5.137 5.14± 0.05

Wishart PLM 3.582 3.64± 0.06
MF-ML 3.578 3.60± 0.05

0.3 0.4 0.5 0.6

β

5

10

15

20

25

C

Figure 2.  The values cPLM (62) for pseudo-likelihood maximization (dotted lines) 
and cMF−ML (64) for the MF-ML algorithm (continuous lines) are plotted as a 
function of β. The red lines correspond to the SK model, the blue lines to the 
Hopfield model with parameter γ = 0.25 (light blue) and γ = 0.15 (dark blue).
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the spin-correlation matrix as in our equation  (22). We believe that this could be 
related to an implicit approximation of the correlation matrix by a unit matrix.
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Appendix A. Details of the replica calculation

From (11), (12) and (18) one can see that the free energy can be written as

F = − lim
n→0

N−1ν−1 ∂

∂n
ln

∫ n∏

a=1

dW a

{∑

σ0

∫
dh∗

n∏

a=1

dha
1

Z0

exp [βσ0h∗]

exp

[
−ν

n∑

a=1

Φ(σ0ha)

]
pcav(h∗, h1, . . . hn)

}αN

,

�

(A.1)
where pcav(h∗, h1, . . . hn) is a multivariate Gaussian density with zero mean and covari-
ance given by (17). The average over the Gaussian fields yields quadratic terms in W ∗ 
and {W a}na=1, that can be simplified by introducing the order parameters {R,q,q0} (19), 
that have to be defined via integrals over delta functions. One finds that free energy 
decouples into two terms:

F (R, q, q0) = F0(R, q, q0) + F1(R, q, q0).� (A.2)
The first one contains the integrals over the couplings and measures the density of the 
networks with order parameters R,q,q0:

F0(R, q, q0) = − lim
n→0

ν−1 ∂

∂n

1

N
lnZcoup,� (A.3)

with

Zcoup =

∫ ∏

a

dW a
∏

a

δ

(∑

ij

W a
i CijW

∗
j −NR

)

∏

a

δ

(∑

ij

W a
i CijW

a
j −Nq0

)∏

a<b

δ

(∑

ij

W a
i CijW

b
j −Nq

)
.

�

(A.4)

For notational simplicity here we have dropped the ‘0’ from the correlation matrix 
C\0. F0 can be computed following our derivation in [19]: we introduce the orthogonal 
matrix U that diagonalizes C = U�ΛU ,

Zcoup =

∫ ∏

a

dW a
∏

a

δ(
∑

ijk

UijW
a
j ΛiUikW

∗
k −NR)

∏

a

δ(
∑

ijk

UijW
a
j ΛiUikW

a
k −Nq0)

∏

a<b

δ(
∑

ijk

UijW
a
j ΛiUikW

b
k −Nq)

� (A.5)
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and transform the student coupling vector into new variables U�W a → W a, which we 

give the same name. We then express the delta functions as integrals over the auxiliary 

parameters {R̂, q̂, q̂0}. The integration gives

F0(R, q, q0) = extr
R̂,q̂,q̂0

1

ν

{
iq̂0q0 + iR̂R− i

2
q̂q +

1

2N

∑

i

q̂ + iR̂2(
∑

j UijW
∗
j )

2Λi

2q̂0 − q̂

+
1

2N

∑

i

ln [Λi(iq̂ − 2iq̂0)]−
1

2
ln(2π)

}

�

(A.6)

and the extremum over the conjugate order parameters yields

F0(R, q, q0) =
1

2ν

[
q0 −R2/V

q − q0
− ln(q0 − q) +

1

N
Tr lnC

]
,� (A.7)

where V, representing the cavity variance of the teacher field h*, was introduced in (19). 
The second term of (A.2) contains the integration over the cavity fields h* and {ha}na=1:

F1(R, q, q0) =− lim
n→0

N−1ν−1 ∂

∂n
ln

{
2

∫
dh∗

n∏

a=1

dha
1

Z0

exp [βh∗]

exp

[
−ν

n∑

a=1

Φ(ha)

]
pcav(h∗, h1, . . . hn)}αN ,

�

(A.8)

where we applied the change of variables σ0h∗ → h∗ and σ0ha → ha. The integration 
gives

F1(R, q, q0) = −α

ν

∫
dv√
2πq

e−
(v−βR)2

2q ln

∫
dy√

2π(q0 − q)
e
− (y−v)2

2(q0−q) e−νΦ(y).� (A.9)
Hence the free energy (A.2) becomes

F (R, q, q0) = −1

ν

{
1

2

q0 −R2/V

q0 − q
+

1

2
ln(q0 − q)− 1

2N
Tr lnC

+α

∫
dv GβR,q(v) ln

∫
dy Gv,q0−q(y)e

−νΦ(y)

}
,

�

(A.10)
where Gµ,ω(v) denotes a scalar Gaussian density with mean μ and standard   
deviation ω.

Appendix B. Saddle point equations for the order parameters

We rewrite (20) as

F = − extr
q,R,x

{
1

2

q −R2/V

x
+ α

∫
Dv max

y

[
−(y −√

qv − βR)2

2x
− Φ(y)

]}
,

�

(B.1)

where Dv = e−v2/2/
√
2π. The extremum over the order parameters gives the following 

set of equations:
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0 =
1

x
− α√

q

∫
Dv v

∂Φ(y)

∂y

∣∣∣∣
y=ŷ

0 = − R

V x
− αβ

∫
Dv

∂Φ(y)

∂y

∣∣∣∣
y=ŷ

0 = − 1

x2

(
q − R2

V

)
+ α

∫
Dv

(
∂Φ(y)

∂y

∣∣∣∣
y=ŷ

)2

,

�

(B.2)

where

ŷ = argmax
y

[
−(y −√

qv − βR)2

2x
− Φ(y)

]
.� (B.3)

If we consider the pseudo-likelihood algorithm with Φ(y) = −βy + ln 2 cosh(βy) (see the 
the definition of Φ (13) and the cost function (5)) we obtain the following equations for 
the order parameters:

0 =
1

x
+

αβ√
q

∫
Dv v (1− tanh(βŷ))� (B.4a)

0 = − R

V x
+ αβ2

∫
Dv (1− tanh(βŷ))� (B.4b)

0 = − 1

x2

(
q − R2

V

)
+ αβ2

∫
Dv (1− tanh(βŷ))2 ,� (B.4c)

where ŷ is defined by

ŷ =
√
qv + βR + βx(1− tanh(βŷ)).� (B.5)

Appendix C. Relation between order parameters

We introduce the auxiliary variables {η1, η2} in the free energy F = F0 + F1 as follows:

F0(R, q, q0, η1, η2) =− lim
n→0

ν−1N−1 ∂

∂n
ln

∫ ∏

a

dW a dq̂0 dR̂ dq̂

∏

a

eiR̂(
∑

ijk UijW
a
j (Λi+η1)UikW

∗
k−NR)

∏

a

eiq̂0(
∑

ijk UijW
a
j ΛiUikW

a
k −Nq0)

∏

a<b

eiq̂(
∑

ijk UijW
a
j (Λi+η2)UikW

b
k−Nq).

�

(C.1)

The integration gives
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F0(R, q, q0, η1, η2) = extr
R̂,q̂,q̂0

1

ν

{
iq̂0q0 + iR̂R− i

2
q̂q

+
1

2N

∑

i

q̂(Λi + η2) + iR̂2(
∑

j UijW
∗
j )

2(Λi + η1)
2

2q̂0 − q̂(Λi + η2)

+
1

2N

∑

i

ln [iq̂(Λi + η2)− 2iq̂0]−
1

2
ln(2π)

}
.

�

(C.2)

From (C.1) it is easy to see that the parameters {ρ,Q} can be derived by derivatives 
of the free energy:

ρ = N−1W ∗ · 〈W 〉 = ν

iR̂

∂F0

∂η1
,

Q = N−1〈W 〉2 = −2ν

iq̂

∂F0

∂η2

� (C.3)

in the limit {η1 → 0, η2 → 0}, where R̂ and q̂ are the values extremizing (C.2) in the 
limit {η1 → 0, η2 → 0}:

q̂ = i
R2 − V q

V (q0 − q)2
,

R̂ = i
R

V (q − q0)
,

q̂0 = i
R2 + V (q0 − 2q)

2V (q0 − q)2
.

� (C.4)

From (C.2)–(C.4) we recover (21).

Appendix D. Replica result for quadratic cost functions

If the cost function has the simple quadratic form (27), computing the maximum and 
the integrals in (20) can be done analytically and the free energy is

F = −q −R2/V

2x
+ α

q + βR(βR− 2η)− η2x

2(1 + x)
,� (D.1)

where the order parameters obey to the following saddle point equations:

q =
η2(1 + αβ2V )

(α− 1)(1 + β2V )
,

R =
ηβV

1 + β2V
,

x =
1

(α− 1)
.

� (D.2)

With this result, the reconstruction error (22) for the linear estimator becomes (28). 
Moreover, we can compute the parameter ∆ defined in (33) as follows. If the ‘training 
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energy’ per degree of freedom N becomes self-averaging we can use the relation (see 
also (11))

E(WML) = − lim
ν→∞

ν−1 lnZ� (D.3)
to explicitly evaluate the minimum training energy as

E(WML) =
N

α
F (WML) = −Nη2

2α

(1 + αβ2V )

(1 + β2V )
,� (D.4)

where the second equality follows from (D.1) with the order parameters fixed to their 
saddle point values (D.2). From (32) and (D.4), one finds (34).

Appendix E. Asymptotics from the replica approach

In the large α limit, we know that the parameter x gets small and the parameters q 
and R both converge to V. For the pseudo-likelihood estimator we find the following 
relation, starting from (B.4b) in the limit R → V  and (B.4c):

q − R2

V
=

1

αβ2

∫
Dv (1− tanh(βŷ))2

[∫
Dv (1− tanh(βŷ))

]2� (E.1)

where ŷ is given by (B.5), that in the limit of small x becomes ŷ � √
qv + βR. Via a 

change of variable, we find the following result, in the limit R → V, q → V  :

q − R2

V
=

1

αβ2

∫
dv GβV,V (v) (1− tanh(βv))2

[∫
dv GβV,V (v) (1− tanh(βv))

]2

� 1

αβ2

1∫
dv GβV,V (v)

(
1− tanh2(βv)

) ,
� (E.2)

where in the last equality we exploited the relation ∫
dv GβV,V (v) tanh(βv) =

∫
dv GβV,V (v) tanh

2(βv). Hence, the error (22) for large α 
scales as

ε �
(
q − R2

V

)
1

N
TrC−1 � 1

αβ2

1∫
dv GβV,V (v)

(
1− tanh2(βv)

)
1

N
TrC−1.

�

(E.3)

Appendix F. Asymptotic error for pseudo-likelihood estimator

We show that Uij = −Bij for the pseudo-likelihood case assuming that the model is 
matched to the true data generating distribution. We start from the relations
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Uij =
∑

σ\0

P (σ\0)
∑

σ0

P (σ0|σ\0)∂i∂j lnP (σ0|σ\0)
� (F.1)

and

Bij =
∑

σ\0

P (σ\0)
∑

σ0

P (σ0|σ\0)∂i lnP (σ0|σ\0)∂j lnP (σ0|σ\0).
� (F.2)

We next perform the inner expectation over P (σ0|σ\0). The result follows from

∂i∂j lnP = −∂i lnP ∂j lnP +
1

P
∂i∂jP

and the fact that, by normalisation of P, one gets 
∑

σ ∂i∂jP (σ|σ\0) = 0.

Appendix G. Error dependence on the system size

In figure 1 we showed that the reconstruction error in systems with N  =  100 spins well 
agrees with the replica result, which is valid in the thermodynamic limit. However, it is 
relevant for applications to show an example of how the system size can aect the recon-
struction error. In figure G1 we show results obtained by fixing α and varying N. First 
of all we notice that finite size eects are much stronger for the the pseudo-likelihood 
algorithm than for the other two methods. Moreover, while the optimal local estimator 
always seems to outperform the other two methods, the performance dierence between 
MF-ML and pseudo-likelihood algorithms depends more strongly on the system param
eters (α, β, teacher coupling distribution), if N is small. For instance, we see in figure G1 
that, for systems of N  =  20,30 spins with couplings drawn from the Wishart distribution, 
the error of the MF-ML and pseudo-likelihood algorithms are compatible.
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Figure G1.  Mean squared error of the couplings inferred by using the pseudo-
likelihood algorithm (blue dots) the optimal local algorithm (green dots) and the 
MF-ML algorithm (red dots) as a function of the system size N, for fixed α = 5. 
The dotted lines represent replica results. Two dierent systems are considered: 
SK model at β = 0.8 (left) and Wishart model with γ = 0.5 at β = 0.5 (right). The 
results are averaged over 5 realizations of the network and 20 dierent datasets 
generated from each network. Error bars represent standard deviations of the 
means.
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5 Learning Curves for the inverse Ising problem

5.3 Further results

In Paper 3, we saw that both the result for the estimation error and the explicit
form of the optimal local estimator depend on two order parameters: the the
squared length of the teacher coupling vector, Y ; the cavity variance of the
teacher field, V . In this paragraph, we show that these parameters can be
estimated from data, if the inverse temperature β is known.

The result for V is obtained from the empirical correlation matrix, according
to equations (Paper 3, 33 - 34); Figure 5.1 shows a good agreement between
the estimated and the true parameters for the SK model.

The length of the teacher vector Y can be computed via a linear estimator
minimizing the cost function (Paper 3, 24). By combining the results for the
order parameters (Paper 3, 21) and (Paper 3, D2), one can express Y in terms
of the length of the student vector Q:

Y =
(1 + β2V )2(Q(α− 1)− η2)

(α− 1)β2η2
, (5.1)

where we also used (Paper 3, 53) for the trace of the inverse correlation matrix.
Now, if we set the free parameter η to 1, we can estimate the couplings W (η=1)

using (Paper 3, 26); hence, we can compute the length of the inferred coupling

vector Q
(η=1)
exp = N−1(W (η=1))2. The parameter Y is then obtained from (5.1)

by setting η = 1 and Q = Q
(η=1)
exp , assuming that we know β and that we

already computed V from data. Figure 5.1 shows a good agreement between
the true length of the teacher couplings and the one estimated from data for
a SK model. Moreover, Tabel 5.1 shows that the estimation error predicted
using the parameters estimated from data is in good agreement with the one
predicted with the true value of the parameters.

We conclude that the optimal local estimator can be fully constructed from
the data. Moreover, notice that both the explicit optimal local estimator and
the explicit mean field ML estimator obey to the same equation (Paper 3, 26),
where the difference is given by the parameter η. From the equations for ηopt
(Paper 3, 29) and from ηMF = φ0/β, where φ0 is given in (Paper 3, 59), it is
evident that the parameter η is a self-averaging quantity; hence, it does not
depend on the central spin σ0. It follows that the couplings estimated using
the two methods will be proportional to each other. Since the mean field ML
estimator is symmetric, also the optimal local quadratic estimator must be
symmetric.
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5.4 Conclusions
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Figure 5.1: The parameter V (left) and Y (right) are estimated from data and
plotted as a function of the inverse temperature. We consider a SK
model of N = 100 spins, where the true value of the parameters is
Y = V = 1. Results are averaged over 10 instances of the network.

β εture εest

0.2 0.751 0.75± 0.02
0.8 0.318 0.315± 0.003

Table 5.1: The error εture (Paper 3, 30) predicted by the replica calculation
with the true value of the parameters Y = V = 1, is compared to
the error obtained using the parameters V and Y estimated from
data (see Figure 5.1). For εture, we used the results of Paper 3,
Figure 1.

5.4 Conclusions

In this chapter, we have discussed the inverse Ising problem and studied the
average error of estimating the couplings based on local convex cost functions.
We worked in a teacher-student scenario, combining techniques of statistical
mechanics: to deal with the intractable distribution of the data we used cavity
arguments, which are valid for dense and weakly interacting systems and be-
come exact in the in the thermodynamic limit for certain statistical ensembles
of network couplings; to performe the quenched averages we used the replica
symmetric formalism, which is correct when the learning algorithms are based
on convex cost functions.

The teacher network is fixed, and the analytic result for the error depends
on two order parameters: the length of the teacher coupling vector Y , the
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5 Learning Curves for the inverse Ising problem

variance of the cavity field V , and the inverse of the spin correlation matrix.
We expressed the latter quantity in terms of V and showed that both Y and
V can be estimated from the data.

The optimal local cost function is of quadratic form, and the estimator asso-
ciated to it is simply computed by inverting the empirical correlation matrix.
This optimal local estimator is symmetric and its parameters can be estimated
from data. Moreover, a mean-field approximation of the maximum likelihood
estimator is also symmetric and asymptotically optimal, and outperforms the
widely used pseudo-likelihood estimator (notice that the difference between the
asymptotic error of those two methods gets smaller for higher temperatures).
We found a very good agreement between theory and simulations for the SK
model and a model where the matrix of couplings has a Gaussian distribution,
for high enough temperatures (paramagnetic phase).

It would be interesting to carry out such a comparison in the small T region.
At low temperatures, the disordered Ising model can undergo a phase tran-
sition to a glassy phase, where the free energy has multiple valleys separated
by high barriers. A first limitation when performing inference is that data
might not come from a uniform sampling over the equilibrium configuration
but rather from a subset of possible states, as the system is non-ergodic. An-
other problem is that, as already mentioned, our simple cavity arguments for
treating the Ising distribution of the spin configurations would no longer apply
and would have a more complex distribution [MP01].

In addition, reconstruction based on mean-field estimators (as well as other
estimators based on self-consistent equations for the magnetisation) will typi-
cally fail at low temperatures. Such equations indeed provide correct solutions
for the magnetisation of single thermodynamic states, while the data could
come from many thermodynamics states. A way to circumvent this problem is
proposed in [NB12b], where the authors use a clustering algorithm to identify
clusters of data generated from the same thermodynamic state. Then, mag-
netisations and correlations are computed separately for each cluster, in which
the self-consistent equations for the magnetisations are still valid. Note that,
if couplings are reconstructed from single thermodynamics states, they are
systematically underestimated. Instead, by collecting the equations of differ-
ent thermodynamic states and jointly solving them (using the Moore-Penrose
pseudo-inverse methods), the quality of the reconstruction is significantly im-
proved.

As a future direction, it would be also interesting to add a regularising
term to the cost function, encoding prior information on the student-coupling
distribution. This would help to avoid the divergence of the error in the small α
region; moreover, it would allow us to study reconstruction in sparse networks.
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5.4 Conclusions

A preliminary analysis shows that, in the presence of a regularising term,
the replica calculation for the free energy becomes more complicated. The
eigenvalues of the correlation matrix and the order parameters of the cavity
fields cannot be easily disentangled as in Paper 3, and further investigation is
needed.
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Appendix

5.A The likelihood and pseudo-likelihood
functions

We consider the problem of inferring external local fields and pairwise cou-
plings Jij in an equilibrium Ising model (paper 4, 1), based on a set of M
independent configurations {σk}Mk=1. A widely used estimator is maximum
likelihood, which consists in maximizing the log-likelihood function with re-
spect to the parameters:

L(H ,J) = β
∑

i<j

Jij〈σiσj〉D + β
∑

i

hi〈σi〉D − lnZ(h,J), (5.2)

where the brakets 〈. . . 〉D define averaging over the data. The parameters can
be inferred in two ways. One can find the maximum of (5.2) by gradient ascent,
which implies computing the partition function at every step of the iteration.
Alternatively, one observes that the log-likelihood (5.2) is maximized when
the data-averaged magnetizations and correlations match -respectively- the
first and second moments of the distribution (paper 4, 1):

〈σi〉 = 〈σi〉D (5.3)

〈σiσj〉 = 〈σiσj〉D, (5.4)

These maximum likelihood conditions are reached by a gradient descent algo-
rithm denoted as Boltzmann machine learning [AHS85], in which the param-
eters are updated according to the following rule:

hnewi = holdi + γ(〈σi〉D − 〈σi〉) (5.5)

Jnewij = Joldij + γ(〈σiσj〉D − 〈σiσj〉). (5.6)

where γ is the learning rate of the algorithm. Both the computation of the
partition function in the first case, and the computation of the thermal av-
erages in the second case, require the sum over 2N terms, which should be
performed at every step of the iteration. Even resorting to Monte Carlo sam-
pling techniques, the exact inference remains intractable.
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5 Learning Curves for the inverse Ising problem

A much faster method to estimate the parameters is the pseudolikelihood
method, where the log-likelihood function to be maximized is approximated
by a simpler function. One isolates one ’central’ spin σ0 and infers the field H0

and coupling vector J0 = {Jj0}j 6=0 starting from the conditional probability

P{h0,J0}(σ0|σ\0) =
eβσ0[

∑
j 6=0 Jj0σj+H0]

2 cosh β[
∑

j 6=0 Jj0σj +H0]
, (5.7)

where, σ\0 denotes the set of all the spins but σ0. The pseudolikelihood esti-
mator of H0 and J0 minimizes the local cost function

f0(H0, J0) = − 1

M

M∑

k=1

lnP{h0,J0}(σ0|σ\0), (5.8)

which does not require the computation of the partition function and can
be estimated in polynomial time in the system size and number of samples.
A derivation of the method in the context of the inverse Ising problem can
be found in [NZB17b], while a proof that the pseudolikelihood estimator is

consistent in [MDP14]. Note that in general the estimation of J
(i)
ij , where

we fixed the spin σi, is different from the estimation J
(j)
ij where we fixed σj.

Typically at the end of the inference procedure one symmetrizes the estimator
by considering Jij = (J

(i)
ij + J

(j)
ij )/2; alternatively, one could minimize the sum∑

i fi while imposing J
(i)
ij = J

(j)
ij .
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6 Learning and inference in
presence of hidden units

6.1 Introduction

We have introduced the kinetic Ising model as a benchmark model to study
network reconstruction from large-scale data. Data collection techniques are
rapidly improving in many scientific fields, especially biology, allowing us to de-
tect the activity of many system components at the same time. For example,
we can now have access to neural recordings from populations of hundreds
of thousands of neurons [ODB+14, Nic08], and the largest public repository
for high-throughput gene expression data [BTW+08] today comprises 300000
samples for over 500 organisms submitted by laboratories from around the
world. Still, the number of recorded units remains small if compared to the
total number of units typically involved in carrying out a biological function.
Hence, variables whose activity is recorded will also interact with variables not
directly detectable, hereafter addressed as hidden variables. The existence of
such variables can influence the dynamics of the observed ones, their effect be-
ing non-negligible. For instance, we could incorrectly identify direct couplings
between observed nodes when they share a common input from unrecorded
units. This problem is receiving considerable attention within the statisti-
cal mechanics community, and it is being addressed from two complementary
perspectives [BDR17].

On one side, recent works [MMR13, HM15] considered the problem of get-
ting as much information as possible from data in the highly under-sampled
regime, namely, when the number of observed samples is much smaller than the
dimensionality of the model. They propose a method called critical variable
selection that allows to detect the degrees of freedom that are most relevant to
the function of the system, without knowing much about the function, itself.
Working in an information theoretical setting, the authors propose a mea-
sure of the amount of information encoded in a sample to define the notion
of the most informative samples. This helps to analyse large datasets in the
under-sampled regime, as it gives a method to find insightful structure in the
data and avoid fitting noise, thus providing an effective alternative to current
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6 Networks with hidden units

dimensionality reduction schemes [GFM16].

A second line of research [TH13,DR13,Hua15,BHTR15,RT15,DB16] consid-
ers models in which the presence of hidden variables is introduced explicitly, to
study in more detail how hidden units can influence the observed ones. Proba-
bilistic models with hidden variables (typically denoted as latent variables) are
indeed widely used in machine learning, as they allow complex distributions
over observed variables to be written as more tractable joint distributions over
the expanded space of observed and latent variables [Bis06].

A widely used method to estimate parameters in latent variable models is
the expectation maximisation algorithm (EM) [MK07], which determines the
parameters that maximise the expected log-likelihood under the posterior dis-
tribution of latent variables. It is a two-step iterative algorithm. In the E step,
one fixes the model parameters and computes the conditional expectation of
the log-likelihood given the observations. In the M step, one updates the pa-
rameters to the values that maximise the expected log-likelihood computed in
the previous step. This iteration is guaranteed to converge to the maximum
likelihood solution (or, in the case of multiple local maxima, to one of the lo-
cal maxima of the likelihood) under mild regularity conditions [Wu83]. How-
ever, the computation of posterior averages in the E step is often intractable
for large systems, and various approximate techniques have been proposed
( [TH13, DR13, BHTR15]), which are based on approximations to the poste-
rior moments of hidden spins. Hence, in this scenario, we find it interesting to
investigate the theoretically optimal performance for predicting hidden spins.

As a paradigmatic model, we consider an extension of the kinetic Ising
model, composed of two sets of variables: the observed ones, whose state can be
measured at each time step, and the hidden ones, whose trajectory is unknown.
There are couplings between the observed units, between the hidden ones, from
hidden to observed, and from observed to hidden units. In a Bayesian setting,
if the probabilistic model that generated the data is known, the sign of the
posterior expectation of a hidden spin gives us the best possible prediction of
that spin state. Hence, our goal is to determine the average error of the Bayes
optimal prediction of hidden variables, where the averages are over the set of
model parameters (the couplings), over the data (observed spin trajectories),
and over the configuration of hidden spins. We can interpret those averages
by drawing an analogy with the statistical physics of disordered systems. The
model parameters and the data represent quenched variables, which change on
a time scale much larger than the time scale characterising the changes in the
hidden spins states, which play the role of thermal variables. If we consider
the couplings to be Gaussian random variables with variance 1/N , where N
is the system size, and work in the thermodynamic limit of N → ∞, we can
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6.2 Paper 4

compute those averages exactly using the replica method of statistical physics.
We will consider the replica symmetric ansatz and show that our analytical
results agree well with simulations, both for posterior averages of the hidden
spins and for the average prediction error.

After discussing the average case scenario, in the second part of this chapter,
we will present a novel approximate technique to compute marginal moments
of hidden spins for a single instance of the network. Our approach is based
on the extended Plefka expansion, the weak coupling expansion we developed
in chapter 3 to derive a mean-field description of the dynamics for the kinetic
Ising model. In this chapter, we will show how to extend it to the case of a
network with hidden units. The same approach was developed in parallel and
proved to be successful [BS16] for the simpler case of stochastic linear dynamics
of continuous degrees of freedom, in a system composed of a sub-network of
observed nodes embedded into a larger bulk of unknown (i.e., hidden) nodes.

As a final point, we will discuss the applicability of the Plefka expansion
in the E step of an EM algorithm aimed at finding the maximum likelihood
estimation of the couplings. The problem of network reconstruction in a ki-
netic Ising model with hidden spins was recently addressed in [TH13, DR13,
BHTR15]. The authors of [BHTR15] study a model in which hidden factors
are conditionally independent of each other given the observed ones (i.e., there
are no couplings among the hidden units) and use a message passing algorithm
to learn the couplings. In [TH13] and [DR13] , the learning problem is ad-
dressed with algorithms of the EM type, which prove to achieve relatively good
performances on systems were the hidden units were not connected to each
others (or were present in the generative model and ignored during learning).
Only in [DR13] , connections among hidden units are considered; in this case,
the algorithm converges only when the number of hidden units is relatively
small, namely, 10% of the total units. Moreover, reconstruction is satisfac-
tory for sparse networks, but not as good for dense ones. Hence, those works
remarkably contributed in addressing the problem, but there are still many
questions left to be resolved. We will further discuss the challenges linked to
an expectation maximisation approach and outline future directions.

6.2 Paper 4.

Author’s contribution: I performed the analytical and numerical calcula-
tions, prepared the figures and contributed to writing the paper.
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1.  Introduction

The problem of statistical inference in kinetic Ising models has recently attracted con-
siderable interest in the statistical physics community, see e.g. [1–5]. These systems 
can be viewed as simple models of networks of spiking neurons and provide a prototype 
model for which a reconstruction of the network from dynamical data can be studied. 
Based on a temporal sequence of observed spin variables, a major goal is to estimate 
the couplings between sites. This task gets more complicated when at some sites the 
spin trajectories are not observed. Besides the problem of inferring the couplings it 
is then also interesting to predict the states of the non-observed spins when the cou-
plings are known. In fact, an iterative solution to the maximum likelihood problem for 
estimating the couplings is the Expectation Maximization (EM) algorithm [6] which 
would iterate between estimating hidden spin states (given the last estimate of the 
couplings) and reestimating the couplings. Unfortunately, exact inference of hidden 
states is not tractable for large networks, but algorithms which are based on statistical 
physics approximations have recently been discussed [7, 8]. Hence, it will be interest-
ing and important to study a scenario for which the theoretically optimal performance 
for predicting hidden spins can be computed exactly. In this paper, we will show that 
such a solution can be found in the thermodynamic limit of an infinitely large network 
when the couplings are random. Our approach will be based on the replica method of 
disordered systems which enables us to compute quenched averages over the random 
couplings for thermodynamic quantities of the model. These thermodynamic quantities 
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are themselves functions of posterior averages (e.g. local magnetizations) of the hidden 
spins. The replica approach has been successfully applied in the past to a large variety 
of statistical learning problems for static network models (for a summary see [9–11]). 
We will restrict ourselves to a model where the couplings are mutually independent 
random variables, i.e. where no symmetry between in-and outgoing connections are 
assumed. For such type of models (without the observations) various exact solutions 
for the non-equilibrium dynamics have been computed, see e.g. [1, 5] and [12, 13] for 
soft spin models. From the point of view of equilibrium statistical physics the case of 
symmetric couplings might be interesting. Such a spin model would obey detailed bal-
ance and allow for a stationary Gibbs distribution. Unfortunately, for the Ising case, 
the exact computation of time dependent correlation functions which are necessary 
for our analysis seems not possible. On the other hand, from a point of view of neural 
modeling, the assumption of symmetric couplings is not realistic [1, 14], as synaptic 
connections in biological networks are known to be strongly asymmetric. Hence, we 
believe that our restriction to asymmetric couplings is justified both from a modeling 
and a computational perspective.

2. The model and Bayes optimal inference

We will consider a model with N Ising spins which are divided into two groups: a group 
of spins si(t) at sites i = 1, …, Nobs = λ N which are observed during a time interval 
of T time steps and a group of hidden, i.e. unobserved spins, denoted by σa(t) at sites 
a = 1, …, Nhid = (1−λ)N. We assume parallel Markovian dynamics for the entire spin 
system, which is governed by the transition probability

∏ ∏σ σ{ } + |{ } =
σ+ +

P s t s t
t t

[ , ( 1) , ( )]
e

2cosh[g ( )]

e

2cosh[g ( )]
,

i

s t g t

a

t g t( 1) ( )

i

( 1) ( )

a

i i a a

� (1)

where the fields are defined as

∑ ∑ ∑ ∑σ σ= + = +g t J s t J t g t J s t J t( ) ( ) ( ), ( ) ( ) ( ),i
j

ij j

b

ib b a
j

aj j

b

ab b
� (2)

in terms of the couplings J and {s, σ} denotes all the possible spin vector configura-
tions; when the time index is not specified we are considering the whole time series, 
t = 0...T. The total probability for a spin trajectory is given by

∏σ σ σ{ } = { } + |{ }
=

−
P s P s t s t( , )

1

2
[ , ( 1) , ( )] ,

N
t

T

0

1

� (3)

where we have considered completely random initial condition P0[{s, σ}(0)] = 1/2N.
To make predictions on the unobserved spins σa(t), we assume that the model given 

by the couplings J is perfectly known and the posterior, i.e. conditional probability of 
the hidden spins defined by

σ σ{ }|{ } = { }
{ }

P s
P s

P s
( )

( , )

( )
,� (4)
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gives the complete information for an optimal inference of hidden spins. Based on this 
probabilistic information, the best possible prediction σ t( )a

opt  for the hidden spin at site 
a and at time t is computed by

σ =t m t( ) sign[ ( )] ,a a
opt

� (5)

where the local magnetization is defined as the posterior expectation

∑σ σ= { }|{ }
σ{ }

m t t P s( ) ( ) ( ) .a a� (6)

Note that this does not correspond to the most likely spin configuration {σ}, because 
we have averaged out the configurations of spins σb(t′) for b ≠ a and t′≠ t.

Given a true ‘teacher’ sequence {σ*} of unobserved spins, we are interested in the 
total quality of the Bayes optimal prediction, i.e. in the expected probability of wrongly 
predicting a spin at site a and time t, given by the Bayes error

* * *

*

* *
∑ ∑ ∑ε σ σ σ

σ

= { } Θ − = { } { }|{ }

Θ −

σ σ{ } { } { }
P s t m t P s P s

t m t

( , ) ( ( ) ( )) ( ) ( )

( ( ) ( )) ,

s
a a

s

a a

,
� (7)

where the step function Θ(x) = 1 for x > 0 and 0 else. In the next section we will use 
the replica method to compute the error in the thermodynamic limit N → ∞, when the 
couplings J are assumed to be mutually independent Gaussian random variables, with 
zero mean and variance of the order 1/N.

3. Replica analysis

The posterior statistics of the hidden spins can be obtained from the following partition 
function

∑∏ σ σ{ } = { } + |{ }
σ{ }

P s P s t s t( )
1

2
[ , ( 1) , ( )],

N
t

� (8)

which equals the total probability of the observed spin configurations and is also the 
normalizer of the posterior probability. Typical performance in the thermodynamic 
limit for random couplings are then computed from the quenched average of the free 
energy =− { }F P sln ( )

J s,
, where the average is taken over the the couplings J and 

over the observed spin configurations with their weights P ({s}). Hence, the averaged 
free energy is given by

∑=− { } { }
{ }

F P s P( )log ( s ) .
s

J� (9)

This average can be computed by the replica trick [9–11] in the following way:

∑=− { }
→ { }

F
n

Plim
d

d
log ( s ) .

n

n

1 s
� (10)

For integer n, we have



Inferring hidden states in a random kinetic Ising model: replica analysis

5doi:10.1088/1742-5468/2014/06/P06013

J. S
tat. M

ech. (2014) P
06013

∑ ∑∑ ∑ ∏ ∑

∑ ∑ ∑σ

{ } =















+

+ + − −












σ σ α

α

α α α α

{ } { } { } { } =
P s s t g t

t g t g t g t

( ) ... exp ( 1) ( )

 ( 1) ( ) log 2 cosh[ ( )] log 2 cosh[ ( )] ,

s

n
J

s

n

it

i i

at

a a

it

i

at

a

J

1

2
1

nN

n(1) ( )�

(11)

with
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To perform the average over the couplings Jij, Jib, Jaj and Jab, which are assumed to be 
mutually independent Gaussian random variables with zero mean and variance k2/N, 
we note that the fields αg t( )i  and αg t( )a  are also Gaussian, which are independent for 
different sites i and a, but will be dependent for different replica index α and β and also 
possibly for different times. This yields

λ λ
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where we have defined the following order parameters
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Introducing these definitions within δ functions and expressing the δ functions using 
conjugate (hatted) integration parameters, we get the following expression:
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where c is a trivial constant not depending on N,
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and the average is over the Gaussian fields with statistics given by (14). In the limit 
N → ∞, keeping the ratio λ = Nobs/N fixed, the integrals over the order parameters 
can be performed using the saddle point method, where we assume replica symmetry, 
i.e. Cα(t, t′) = C(t, t′) ∀α, t < t′ and, Qαβ(t, t′) = Q(t, t′) ∀α < β, t, t′. We get
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in terms of Gaussian independent random fields ψ(t), ζ(t), ν(t), ξ(t) and φ(t), with zero 
mean and covariances given by the following set of equations:

ψ ψ λ λ

ζ ζ λ

′ = ′ + − ′

′ = − ′ − ′

t t k S t t Q t t

t t k C t t Q t t
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�φ φ =−t t iQ t t( ) ( ) ( , ),� (24)

for t′ = t. The term Γ0 contains the initial condition for the fields φ, ξ (appendix B). 
The three sets of Gaussian variables in (20), (21), (23) and (24) have been introduced 
to linearize the quadratic forms in equation (17). We can now perform the continua-
tion to noninteger n and obtain the free energy per spin limN → ∞F/N as the stationary 
value of
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From equation (25) we can compute the selfaverageing values of the order parameters 
and their conjugates. Previous studies [1, 5, 15] of spin models with asymmetric cou-
plings have shown that spin correlations S(t, t′) decay after one time step. Hence, we 
expect that also for our model the other two time order parameters are zero for t ≠ t′. 
Indeed, we can show (for an example, see appendix A) that the results

���′ = ′ = ′ = ′ = ′ =C t t Q t t C t t Q t t S t t( , ) ( , ) ( , ) ( , ) ( , ) 0

are self-consistent solutions of the order parameter equations for t′≠ t and this solution 
is also supported by simulations. In this case, only the terms with t′ = t give non-zero 
contribution in equation (16) and the free energy of the system simplifies to
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where

∼ ψ ζ φ
ψ ζ

=
+ + +

+
]

Z t
t t

t t
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cosh[ ( ) ( ) (t 1)

cosh( ( ) ( ) )
,

Q(t) ≡ Q(t, t) and the initial condition 
∼Γ0 is given in appendix B. The order parameter 

Q(t) gives the typical overlap of two independent spin configurations at time t drawn 
at random from the posterior distribution. By symmetry, it also describes the expected 
overlap of the hidden spins drawn from the posterior with the true ‘teacher’ spins of 
the model from which the observation data were generated. Hence the limit Q(t) = 0 
describes a situations where the posterior gives no information on the hidden spins. On 
the other hand, Q(t) = 1, means that we can predict the hidden spins perfectly. We 
obtain the following equations for the order parameters:
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where

∼ ∼ψ ζ φ ψ ζ= + + + = +A t t t t B t t t( ) ( ) ( ) ( 1), ( ) ( ) ( ).

The equations for the initial and final conditions, Q(0) and �Q T( ), are given in in 
appendix B.
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4. Distribution of local magnetization

It is easy to extend the replica approach to the computation of other thermodynamic 
quantities such as functions of the local magnetizations. We find that, in the thermo-
dynamic limit, hidden spins can be viewed as mutually independent random variables 
which are coupled to random fields. The spins have local magnetizations

∼

∼ψ φ| =
− −

−
ζ

ζ

−

−

m t
A t Z t

Z t
( , )

tanh ( 1) ( 1)

( 1)
,t

t

1

1

� (29)

where the ‘inner’ averages over ζ reflect the averaging out of the other spins. The mag-
netizations depend on the random fields ψ(t − 1), φ(t). These Gaussian fields reflect the 
disorder originating from the random couplings. In computing expectations they get an 
extra statistical weight given by

∼

∼ψ φ =
−

−
ζ

ζ ψ φ

−

− −

w
Z t

Z t
( , )

( 1)

( 1)
, ,

t

t t t

1

1 1

� (30)

in the ‘outer’ average. Hence, the distribution of local magnetizations at an arbitrary 
site and at time t is given by

ψ φ δ ψ φ= − | ψ φ−
p m w m m t( ) ( , ) ( ( , ) ,t ,t t1� (31)

from which the overlap Q is recovered as ∫=
−

Q t p m m m( ) ( ) dt
1

1
2 . Finally, to get the 

Bayes error we note that the (posterior) probability of a spin σ equals σ+m
1

2
( 1). 

Hence equation (7) is translated into

∫ ∫∑ε σ σ= + Θ − = − | |
σ=± − −

p m m m m p m m m
1

2
( )( 1) ( )d

1

2
(1 ( ) d ),t t

1 1

1

1

1

� (32)

where the last equality follows easily from the fact that pt(m) = pt(−m).

5. Results

We have solved the order parameter equations (27) and (29) by iterating equations 
(22), (24), (27) and (29) for different values of the load parameter λ and coupling 
strength k (for an example see figure 1). We start the recursion from the prior initial 
condition Q (0) = 0 and then iterate the equations forward and backward, updating 
the boundary conditions at each iteration according to equation (B.2). The overlap is 
smallest at the boundary t = 0 and t = T, because there the information flow is only 
from one direction and is also expected to decay over the time T.

When the length T of the spin trajectories grows, the order parameters Q(t) and 
�Q t( ) for times t away from the boundaries, i.e. 0   t  T, converge to stationary 
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values Qstat and �Qstat. These can be directly computed from equations (27–29) by set-
ting Q(t) = Q(t − 1) = Qstat and � � �= + =Q t Q t Q( ) ( 1) stat. For given stationary order 
parameters we have then computed the distribution of local magnetizations and the 
Bayes error. The Bayes error ε is shown in figure 2 as a function of the load factor λ. 
In the limit of no observations, λ = 0, the prediction on the the state of hidden spins 
is completely random and the error has the trivial value ε = 0.5. The error rapidly 
decreases as λ gets larger, but remains nonzero for λ = 1, indicating the presence of a 
residual error in almost fully observed systems due to the stochasticity of the Markov 
process. Since the couplings are responsible for the propagation of information between 
spin sites, the Bayes error decreases as the coupling strength increases; in particular 

Figure 1. Order parameter Q as a function of time, for a system with λ = 0.4 and k = 1. 
Red line: solution of the order parameter equations. Black dashed line: stationary value 
Qstat of the order parameter. Blue points: Q from numerical simulation of a system with 
Nhid  =  10 hidden spins, averaged over 10 000 samples; the error bars represent the 
standard deviation.
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Figure 2. Bayes error as a function of the load factor for k  =  1 (solid red line, blue 
triangles) and k = 2 (dashed red line, blue circles). Red lines: replica result, computed 
with the stationary values of the order parameters. Blue points: numerical simulation of a 
system with Nhid = 8 hidden spins, averaged over 2500 samples; the error bars represent 
the standard deviation; the Bayes error is computed at time t = T/2, with T = 20.
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we find that ε → 0 for k → ∞. This behaviour is illustrated in figure 3, where the 
distribution p(m) of the local magnetization (equation (31)) is shown. For small k the 
distribution is close to a Gaussian centered at zero, with vanishing variance as k → 0, 
meaning (see equation (32)) that nontrivial prediction on the magnetization can be 
made. As k grows larger the distribution broadens and above a critical value the curve 
becomes bimodal. For large k, the distribution p(m) concentrates at m = ±1, allowing 
for a perfect prediction of hidden spins.

Our analytical results agree very well with simulations of spin systems with relative 
small number of spins. For these systems we could compute local magnetizations ma(t) 
exactly by enumeration. The Markovian spin dynamics facilitated these computations 
with the use of a forward–backward algorithm [16] well known for hidden Markov mod-
els (appendix C). We compute Q(t) using

∑=
=

Q t
N

E m t( )
1

( ),
a

N

s J a

hid 1

,
2

hid

where Es, J denotes the expectation over all possible observed spins and over the set of 
random couplings.

Figure 3. Distribution of local magnetization for load factor λ  =  0.8 and coupling 
strengths k = 0.2 (a), k = 0.6 (b) and k = 2 (c). Red line: analytical result (equation 
(31)) assuming stationary values of the order parameters. Blue histogram: numerical 
simulations averaged over 80 000 samples for a system with eight hidden spins. The 
magnetization is computed at time t = T/2, with T = 20.
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6. A comment on symmetric networks

From the point of view of equilibrium statistical physics a corresponding analysis for 
symmetric couplings Jij = Jji might be of interest. In this case our approach would 
lead to additional order parameters (e.g. response functions). More important, order 
parameters would be usually non-zero for t ≠ t′. Take for example the order parameter

∑ ∑

∑

σ σ σ

σ σ σ

′ =







{ } { }|{ } ′







=







{ } { } ′







σ

σ

{ } { }

{ } { }

C t t E P s P s t t

E P s t t

( , ) ( ) ( ) ( ) ( )

( , ) ( ) ( ) ,

J
s

a a

J
s

a a
,

� (33)

where the last line follows from Bayes theorem. Hence, C(t, t′) equals the usual spin 
correlation in a system of Nhid + Nobs = N spins, where there is no difference between 
hidden and observed spins (because there is no conditioning on the latter ones). 
Unfortunately, even for this simpler, more standard type of spin-glass model (studied 
extensively in the 1990s), exact analytical results for two time correlations (except for 
the case of uncorrelated couplings and Gaussian or spherical spin models) were not 
possible. A Monte Carlo approach to the effective non-Markovian single spin dynam-
ics [15, 17] could be adapted to our model but it would require extensive nontrivial 
numerical simulations with an increasing complexity when the time window T grows. 
Moreover, this method cannot be easily extended to the stationary case.

To circumvent this problem, one might be tempted to resort to equilibrium techniques 
instead. In fact, for the case of symmetric couplings, the Markovian dynamics of the joint 
system of s and σ spins has a well known stationary equilibrium distribution. This static 
distribution is usually known as the Little model [18–20] and was frequently discussed in 
in the framework of Hopfield type neural networks with parallel dynamics. On might then 
calculate learning properties of the static model by using again the replica approach. While 
this should indeed be feasible (when replica symmetry breaking effects are neglected), one 
should note that this approach would consider a quite different statistical ensemble. The 
equilibrium case would deal with the probability P(σ (t) | s(t)) of spins at fixed large time 
t, whereas our dynamic ensemble is concerned with P ({σ} | {s}) with a conditioning on 
information {s} from the time history of past and future observations.

Hence, the problem of solving the model with symmetric couplings is far different 
from the asymmetric case studied in this paper and will be postponed to future work.

7. Outlook

In this paper we have presented a first step in analyzing optimal Bayesian inference 
for kinetic Ising models with observed and unobserved spins valid for large random 
systems. The replica analysis revealed a fairly simple statistical picture of the posterior 
trajectories of hidden spins. Spins at different time steps (and sites) are statistically 
independent, but their local magnetizations depend on the propagation of information 
from past and future spins which is expressed through order parameters.
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One can expect that this simple picture derived for the disorder averaged system 
can be translated into equations for the local magnetizations of hidden spins which are 
valid for a typical single system with fixed couplings and observations. In fact, such 
mean field equations generalizing the results of [1] to the case of observations can be 
derived from cavity arguments and could be used as an efficient algorithm for the com-
putation of local magnetizations in large random networks. This could then be used as 
an approximation in the E-Step of an EM algorithm [6] which aims at computing the 
maximum likelihood estimator of the network couplings Jij, averaging out unobserved 
spins. We will discuss such an approach in a forthcoming paper.

It will be interesting to extend this replica approach to other dynamical models. As 
long as we restrict ourselves to asymmetric random couplings one can expect that the 
case of continuous time (at least for the stationary limit) models could be treated. This 
would include e.g. continuous time Glauber dynamics and coupled stochastic differen-
tial equations (soft spin models).
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Appendix A. Self consistent solution for the two time order parameters

Let us consider, as an example, the stationary value of the order parameter Q. From 

the saddle point equation �
∂
∂

=f

Q
0 we find:

∏

∏ ∏
∏

Γ τ

Γ τ Γ τ
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where

ψ ζ φ ξ= + + + + +A t t t t t( ) ( ) ( ) ( 1) ( 1).� (A.2)

We want to show that Q(t, t′) = 0 for t ≠ t′ is a self consistent solution. If our 
assumption holds for the order parameters on the right hand side of equation (A.1), the 
averages over the gaussian fields factorize over time, yielding:
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− −
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The first two terms in the numerator of the above equation can be written in terms 
of the independent random variables x = ψ(t − 1) +ζ(t − 1) and y = ϕ(t) + ξ(t) as

+ = +

= + =

x y

x

x y x y

x

x y y

sinh( )

cosh( )

sinh( )cosh ( ) cosh ( )sinh ( )

cosh ( )

tanh( ) cosh ( ) sinh ( ) 0.

x y x y

x y y

, ,
� (A.4)

Using a similar procedure, this argument can be extended to all the other order 
parameters.

Appendix B. Boundary conditions

The parameters Γ0 and 
∼Γ0 containing the initial conditions have the following expression:

∼Γ φ ξ Γ
φ φ

φ
= + = φ

φ
2 cosh [ (0) (0)],

cosh ( )log (2 cosh ( ))

cosh ( )
.0 0

0 0

0

0

0

� (B.1)

The initial and final condition for the order parameter are:

�
φ φ

φ
= =φ

φ
Q Q T(0)

tanh ( )sinh ( )

cosh ( )
, ( ) 0.

0 0
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0

0

� (B.2)

Appendix C. Forward-backward algorithm

In order to compute the local magnetizations of hidden spins at each time t, we need 
the posterior distribution P[{σ}(t)|{s}] 1  t<T of the hidden spins at time t, given the 
obserserved spins at all times.

It is convenient to divide the computation of P[ {σ}(t)|{s}] in two parts, one involv-
ing the spins up to time t + 1, the other the spins from t + 2 to T:

{ } { } { }
{ } { } { }

σ σ

σ σ

= { } { }

∝ { } { } +
+ +

+ +

P t s P t s s

P t s P s t s t

[ ( ) ] [ ( ) ,

[ ( ) ] [ ( ), ( 1)],

t t T

t t T

1: 1 2:

1: 1 2:

� (C.1)

where the last line follows from Bayes’ rule and the conditional independence of 
{s}t+2:T and {s}1:t given {s}(t  +  1) and {σ}(t). The two terms in the right hand 
side of equation (C.2) can be computed by recursion through time. In particu-
lar, it can be shown [16] that the first term, referred to as the ‘forward message’,  
fm[{σ}(t)] = P[{σ}(t)|{s}1:t+1], is obtained by a forward recursion form 1 to t gov-
erned by the following equation:

∑
σ σ

σ σ σ

{ } ∝ { } + |{ }

× { } | − { } − { } −
σ{ } −

t P s t s t

P t t s t t

fm[ ( )] [ ( 1) , ( )]

[ ( ) ( 1), ( 1)] fm[ ( 1)].
t( 1)

� (C.2)
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The second term, or ‘backward message’ bm[ {σ}(t  +  1)]  =  P[{s}t+2:T|{σ}(t),  
{s}(t + 1)], is obtained by a backward recursion, running from T to t + 1 and obeying:

∑σ σ σ

σ σ

{ } + = { } + |{ } + { } +

× { } + |{ }

σ{ } +
t P s t s t t

P t s t

bm[ ( 1)] [ ( 2) , ( 1)] bm[ ( 2)]

[ ( 1) , ( )].

t( 1)
� (C.3)
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6 Networks with hidden units

6.3 Further results

6.3.1 Inferring hidden states in a kinetic Ising model via the
extended Plefka expansion

In this section we continue to study the kinetic Ising model with hidden nodes,
as introduced in the previous section, and provide an approximate method to
estimate the posterior expectation of hidden spins given the observed ones.
This is achieved by finding a suitable approximation to the log-likelihood of
the data, that corresponds to the generating function of the posterior mo-
ments. We will work in a generating functional approach and provide a mean
field approximation to the log-likelihood, and test it on a fully connected dense
network with Gaussian independent random couplings. In the previous chap-
ter, we showed that accurate mean field equations for the kinetic Ising model
with dense Gaussian random couplings are found via the Extended Plefka ex-
pansion, namely a weak coupling expansion of the Legendre transform of the
log-likelihood, at fixed first and second moment over time. We now extend this
formalism to the case in which a finite fraction of the trajectories of the spins
are observed and the rest are hidden. We thus consider a model composed of
two sets of variables: the observed spins {si(t)}, i = 1 . . . NOBS and the hid-
den spins {σa(t)}, a = 1 . . . NHID. The dynamics is defined by the following
transition probability:

p[{s, σ}(t+ 1)|{s, σ}(t)] =
exp [

∑
i si(t+ 1)gi(t) +

∑
a σa(t+ 1)ga(t)]∏

i,a 2 cosh[gi(t)]2 cosh[ga(t)]
, (6.1)

where gi(t) and ga(t) are the fields acting on observed spin i and hidden spin
a at time t:

gi(t) =
∑

j

Jijsj(t) +
∑

b

Jibσb(t),

ga(t) =
∑

j

Jajsj(t) +
∑

b

Jabσb(t) ,
(6.2)

and Jij, Jia, Jai, Jab are the observed-to-observed, observed-to-hidden, hidden-
to-observed and hidden-to-hidden couplings. The likelihood of the observed
spin configuration under the dynamics defined by (6.1) is

p[{s(t)}0:T ] = Trσ
∏

t

p[{s, σ}(t+ 1)|{s, σ}(t)], (6.3)
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6.3 Further results

and its computation involves the trace over the hidden spins trajectories {σ(1) . . . σ(T )}.
To perform the calculation, we introduce a set of the auxiliary fields, ψ,H,H, B̂, B̂,
and consider the following functional:

Lα[ψ,H,H, B̂, B̂] = log

∫
DG Trσ exp{Ωα[ψ,H,H, B̂, B̂]}, (6.4)

where

Ωα[ψ,H,H, B̂, B̂] =
∑

it

si(t+ 1)gi(t) +
∑

at

σa(t+ 1)ga(t)

−
∑

it

log 2 cosh[gi(t)]−
∑

at

log 2 cosh[ga(t)]

∑

it

iĝi(t)

[
gi(t)−

∑

j

Jijsj(t)− α
∑

b

Jibσb(t)

]

+
∑

at

iĝa(t)

[
ga(t)−

∑

j

Jajsj(t)− α
∑

b

Jabσb(t)

]

+
∑

at

ψa(t)σa(t)− i
∑

it

Hi(t)ĝi(t)− i
∑

at

Ha(t)ĝa(t)

+
∑

at

B̂i(t) ĝ
2
i (t) +

∑

at

B̂a(t) ĝ2
a(t),

(6.5)

and where we have defined G = {gi, ĝi, ga, ĝa}. Note that the log likelihood of
the data is recovered in the limit of auxiliary fields going to zero: ψ → 0, Ĉ →
0, B̂ → 0, B̂ → 0, Ĝ → 0 . We have introduced the parameter α in the above
functional to control the magnitude of the observed-to-hidden and hidden-to-
hidden couplings. When α = 0 the hidden units are not interacting among
themselves nor are they influenced by the dynamics of the observed units and,
due to the normalizing term over the field ga(t), also the hidden-to-observed
couplings cancel from the likelihood, i.e. all the random variables decouple.
The Plefka expansion will allow us to analytically compute an approximation
to the likelihood by adding first and second order corrections to the non–
interacting description. This is achieved by considering the Legendre transform
of the log–likelihood (6.4) at fixed first and second local moments. These
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6 Networks with hidden units

moments can be defined by derivatives of the log–lilelihood as follows:

µa(t) =
∂Lα
∂ψa(t)

= 〈σa(t)〉α (6.6)

− im̂i(t) =
∂Lα
∂Hi(t)

= −i〈ĝi(t)〉α (6.7)

− iµ̂a(t) =
∂Lα
∂Ha(t)

= −i〈ĝa(t)〉α (6.8)

Bi(t) ≡
∂Lα
∂B̂i(t)

= 〈ĝ2
i (t)〉α (6.9)

Ba(t) ≡
∂Lα
∂B̂a(t)

= 〈ĝ2
a(t)〉α (6.10)

where 〈· · · 〉α denotes averaging over the distribution defined by the measure
inside the functional (6.4). Namely, for any function F (σ) of the trajectory of
hidden spins σ we define:

〈F 〉α =

∫
DG Trσ F (σ) exp

(
Ωα[ψ,H,H, B̂, B̂]

)

∫
DG Trσ exp

(
Ωα[ψ,H,H, B̂, B̂]

) . (6.11)

By setting the auxiliary fields to zero and α = 1, one recovers the posterior
moments of the original dynamical system (6.1). Note that we are fixing only
local moments, as this will allow us to derive marginal distributions of spin tra-
jectories. We are also neglecting two times moments, as we are considering an
asymmetric network, for which we know (Paper 4) that two times correlations
of the form C(t, t′) decay to zero if |t − t′| > 1. By computing the Legendre
transform of Lα with respect to the fields ψ,H,H, B̂, B̂ and performing an
extended Plefka expansion of the resulting functional, as explained in Paper
1 (for details, see Section 6.A), we are able to derive an effective single-site
log-likelihood:

L0[ψ,H,H, B̂, B̂] = log

{∏

it

〈
esi(t+1)hi(t)

2 cosh hi(t)

〉

hi(t)

∏

at

〈
cosh [ha(t) + ua(t+ 1)]

2 cosh ha(t)

〉

ha(t)

}

(6.12)
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where we have introduced the gaussian variables hi(t) ∼ N (γi(t), Vi(t)) and
ha(t) ∼ N (γa(t), Va(t)):

ua(t) = ψa(t)− i
∑

i

Jiam̂i(t)− i
∑

b

Jbaµ̂b(t) +
∑

i

J2
iaµa(t)

(
Bi(t)− m̂2

i (t)
)

+
∑

b

J2
baµa(t)

(
Bb(t)− µ̂2

b(t)
)

γi(t) =
∑

j

Jijsj(t) +
∑

b

Jibµb(t) + i
∑

a

J2
iam̂i(t)

(
1− µ2

a(t)
)

+Hi(t)

γa(t) =
∑

j

Jajsj(t) +
∑

b

Jabµb(t) + i
∑

b

J2
abµ̂a(t)

(
1− µ2

b(t)
)

+Ha(t)

Vi(t) = 〈φi(t)φi(t)〉 =
∑

a

J2
ia

(
1− µ2

a(t)
)
− 2B̂i(t)

Va(t) = 〈φa(t)φa(t)〉 =
∑

b

J2
ab

(
1− µ2

b(t)
)
− 2B̂a(t).

(6.13)

The auxiliary fields ψ,H,H, B̂, B̂ have to be set to zero in order to obtain the
marginal moments of hidden spins for the original model (6.1, 6.3), within the
approximate description. The TAP equations for these moments are obtained
from the set of equations (6.6-6.10) as follows:

µa(t) = lim
{ψ,H,H,B̂,B̂}→0

∂L0

∂ψa(t)
=

〈
tanh[ha(t− 1) + ua(t)]

cosh[ha(t−1)+ua(t)]
coshha(t−1)

〉
ha〈

cosh[ha(t−1)+ua(t)]
coshha(t−1)

〉
ha

(6.14)

−im̂i(t) = lim
{ψ,H,H,B̂,B̂}→0

∂L0

∂Hi(t)
= si(t+ 1)−

〈
tanhhi(t)

esi(t+1)hi(t)

2 coshhi(t)

〉
hi〈

esi(t+1)hi(t)

2 coshhi(t)

〉
hi

(6.15)

−iµ̂a(t) = lim
{ψ,H,H,B̂,B̂}→0

∂L0

∂Ĥa(t)
= µa(t+ 1)−

〈
tanhha(t)

cosh[ha(t)+ua(t+1)]
coshha(t)

〉
ha〈

cosh[ha(t)+ua(t+1)]
coshha(t)

〉
ha

(6.16)
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Bi(t) = lim
{ψ,H,H,B̂,B̂}→0

∂L0

∂B̂i(t)
=

〈(
1− tanh2 hi(t)

)
esi(t+1)hi(t)

2 coshhi(t)

〉
hi〈

esi(t+1)hi(t)

2 coshhi(t)

〉
hi

−

〈
(si(t+ 1)− tanhhi(t))

2 esi(t+1)hi(t)

2 coshhi(t)

〉
hi〈

esi(t+1)hi(t)

2 coshhi(t)

〉
hi

(6.17)

Ba(t) = lim
{ψ,H,H,B̂,B̂}→0

∂L0

∂B̂a(t)
=

〈(
1− tanh2 ha(t)

)
cosh[ha(t)+ua(t+1)]

coshha(t)

〉
ha〈

cosh[ha(t)+ua(t+1)]
coshha(t)

〉
ha

−
Trσa

〈
(σa(t+ 1)− tanhha(t))

2 eσa(t+1)[ha(t)+ua(t+1)]

2 coshha(t)

〉
ha〈

cosh[ha(t)+ua(t+1)]
coshha(t)

〉
ha

(6.18)

It is interesting to notice the structure of time dependences in the set of TAP
equations: the posterior average of hidden spins (magnetization) propagates
forward the message from past spins, while the posterior averages of the aux-
iliary variables {ĝi, ĝa} are responsible for the back–propagation of the infor-
mation coming from observations at future times.

To test the correctness of our results, we consider a network with couplings
Jij, Jib, Jaj and Jab, which are assumed to be mutually independent Gaussian
random variables with zero mean and variance 1/N . As a first check, we make
a comparison with the average case scenario studied in Paper 4. Namely, we
solve the system of equations (6.14-6.18) iteratively to compute the magneti-
zation of hidden spins µa(t) at all sites a and times t, and use it to compute
the order parameter

Q(t) =
1

NHID

Nhid∑

a=1

Es,J µ
2
a(t), (6.19)

where Es,J denotes empirical averaging over different realizations of the net-
work and different datasets generated from each realization. We compare the
obtained result with the theoretical value of Q(t) derived in Paper 4 by means
of a replica calculation. Figure 6.1 shows a good agreement between the two
values.

We then consider a single instance of the network, and compare the mag-
netisations predicted via the extended Plefka expansion with the exact ones,
which can be computed with the forward-backward algorithm explained in
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6.3 Further results

Appendix E of Paper 4. The result is shown in figure 6.2 , where we consider
a network in which the 20% of the spins are hidden; in this case, according to
our previous analysis (Paper 4, Figure 2), an exact calculation of the posterior
average of hidden spins would predict the true magnetisation with relatively
good accuracy. Hence, the good matching between exact and estimated mag-
netisations in figure 6.2 indicates that the extended Plefka expansion provides
a good approximation to the true posterior averages.

To conclude this section, we would like to point out that the Plefka expan-
sion can also be applied to study a scenario where all spins can be observed
simultaneously, but observations are sparse in times; namely, in between ob-
served time steps, there is a number Tu of time steps of the Glauber dynamics
where the state of the system is not observed.

As a preliminary analysis to tackle the problem of inferring the state of the
spins at unobserved time steps, we consider one set of spin trajectories, for
which we can observe the spin state at the initial and final time steps. By con-
catenation of such trajectories, we can then describe the sparse observation
scenario. In Appendix 6.B , we show how to compute the conditional expecta-
tion µa(t) of the spins at unobserved time steps given the observations, using
the Plefka expansion. We can then estimate the values of the spins as

σesta (t) = sign[µa(t)]. (6.20)

In figure 6.3 , we show the average percentage of correctly inferred spins as
a function of Tu . It is interesting to notice that, even if there is only one
unobserved time step, we cannot, on average, infer its state with a precision
higher than 75% , due to the stochastic nature of the system. The analysis of
sparse time-series data appears to be an interesting problem for future research.
As a next step in the analysis, we should compare the results with the exact
local magnetizations at unobserved time steps, which we could obtain from an
algorithm of the forward-backward type.

6.3.2 Network reconstruction

In the previous section, we derived a mean-field approximation for the posterior
statistics of hidden spins that could be used in the E step of an EM algorithm
aimed at computing the maximum likelihood value of the couplings. In the E
step, one estimates the posterior moments (6.14-6.18) and the log-likelihood
(6.12) at fixed couplings. In the M step, one updates the couplings proportional
to the derivatives of the log-likelihood with respect to them. We implemented
this algorithm and applied it to a system with Gaussian independent couplings
scaling as 1/N . Two main problems emerge:
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6 Networks with hidden units

Figure 6.1: The blue dots show the order parameter Q (see 6.19) computed
from the Extended Plefka’s expansion, as a function of time. Av-
erages are over 5 realizations of the networks and 10 datasets gen-
erated from each network. The red line corresponds to the theo-
retical result we obtained in Paper 4. The considered network is
composed of 20 spins, the 10% of them being hidden. The teacher
couplings are drawn as independent Gaussian random variables
with zero mean and variance 1/N .
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Figure 6.2: Magnetization of one hidden spin as a function of time. We com-
pare the result we get from our Plefka’s expansion (blue dots), with
the theoretical result obtained by using the Forward-Backward al-
gorithm explained in Appendix E of Paper 4, Appendix E (red
dots). We consider a network of 20 spins where the hidden units
are the 20% of the total number of spins. The teacher couplings are
drawn as independent Gaussian random variables with zero mean
and variance 1/N .
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Figure 6.3: Percentage of correctly inferred spin values at unobserved time
steps vs Tu. The spin values are estimated using (6.20). We con-
sider a system of 20 spins. Results are averaged over 5 istances
of the network. The teacher couplings are drawn as indepen-
dent Gaussian random variables with zero mean and variance 1/N .
When the number of unobserved time steps exceeds Tu = 12, the
probability of correctly inferring the spin value drops to 0.5.
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6.4 Conclusions

• Convergence to local maxima. We know that the expectation maximi-
sation algorithm is guaranteed to converge to the maximum of the log-
likelihood, under mild regularity conditions [Wu83]. If the log-likelihood
has multiple maxima, the algorithm could converge to different local
maxima depending on the initial conditions. This is exactly the situa-
tion that we observe. If the initial condition for the couplings corresponds
to the true value of the couplings plus a small Gaussian noise, we can
reconstruct the network accurately, as shown in figure 6.4. On the con-
trary, if we start from random couplings, the algorithm converges to a
different point in the parameter space, far from the true one.

• Regions of the parameter space explored during the search. The E step of
the algorithm is based on the extended Plefka expansion that relies on the
assumption that the couplings are weak and gives accurate results if the
variance of the coupling distribution is a quantity of order 1/N . During
the search, the algorithm reaches regions of the parameter space where
this assumption seems to be no longer valid; for instance, where most of
the couplings are small and a few are significantly larger. It is not clear
how accurately we are able to predict the posterior moments in those
regions, with a large inaccuracy possibly compromising the upcoming
steps of the algorithm.

By introducing a prior over the couplings (i.e., by adding a regularising term
to the log-likelihood), the performances of the algorithm improve, but con-
vergence to the desired result is still not obtained for most random choices
of the initial conditions. As we mentioned in the introduction, recent works
[TH13,DR13,BHTR15] showed that the presence of hidden-to-hidden connec-
tions seems to be one of the major sources of complication. One could then
think to design an algorithm to find the maximum likelihood solution for the
other three sets of couplings, where the likelihood has been marginalised out
over the hidden-to-hidden couplings. Moreover, a theoretical study of how the
average prediction error for inferring the couplings scales as a function of the
length of available data trajectories could also be an important starting point
to better understand this problem. In general, we think that further investi-
gation is needed to design a better algorithm, and we postpone this for future
work.

6.4 Conclusions

In this chapter, we studied the problem of inferring hidden states in a kinetic
Ising model, where a fraction of the trajectories of spins is observed and a
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6 Networks with hidden units

fraction is hidden. Couplings are independent Gaussian random variables,
and are present between the observed variables, between the hidden one, from
hidden to observed and vice versa.

First, we computed the average error of the Bayes optimal predictor for
the hidden spins, which can be determined from the posterior expectation of
hidden spins, and studied its dependence on the fraction of the hidden units
and on the stochasticity of the dynamics.

Then, we considered one particular realization of the couplings. The poste-
rior average of hidden spins can be computed exactly using a forward-backward
algorithm, but it becomes intractable if the number of hidden units exceeds
a ten. An approximation of posterior expectations is found by applying the
extended Plefka expansion to the log-likelihood of the data, which corresponds
to the generating function of the posterior moments; this yields a set of equa-
tions for the posterior moments, which can be solved iteratively. The predicted
magnetization of hidden spins agrees very well with the exact result from the
forward-backward algorithm.

We also delineated two future directions of our analysis. In a scenario where
all spins are measurable, but observations are sparse in times, one can pre-
dict the state of the spins at unobserved time steps using the extened Plefka
expansion. Moreover, our mean-field method can be used in the E step if
an EM type of algorithm is aimed at inferring the parameters of the model,
namely, the couplings between the spins. We observed that, in a naive version
of the algorithm, where the M step is performed by simple gradient ascent,
several important questions remain open, mainly related to the algorithm get-
ting stuck in local maxima where the hypothesis of the approximation used
in the E step might be violated. While a lot of research has been devoted to
the problem of escaping local maxima (see, e.g., [MM11] ), it is less trivial
to identify an efficient method to test the validity of the mean-field equations
in the regions explored by the algorithm. We believe that the design of such
an inference algorithm deserves further investigation. As a conclusive remark,
we stress that, to apply this model to a real-world system, one should know
beforehand the number of hidden spins (NHID) , which is hardly realisable in
practice. In [DR13] , the authors argue that the number of hidden units could
also be inferred from the data, as the value that maximises the log-likelihood
of observed spins considered a function of NHID. An interesting alternative
perspective is mentioned in [TH13] , where the authors propose to abandon
the idea of modelling the details of the unrecorded units but instead model
the activity of entire populations of hidden units by hidden variables. For in-
stance, imagine we wanted to use our model to infer the effective connectivity
of a group of excitatory neurons, whose activity can be simultaneously mea-
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6.4 Conclusions

sured, coupled to a population of unrecorded inhibitory neurons. In this case,
we could represent the activity of the whole unrecorded inhibitory population,
which could be either active or inactive at a given time step, by a single hidden
node.
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Figure 6.4: Scatter plots showing the inferred couplings versus the correct ones.
We consider a network with N = 40 spins with 16 hidden units
and a trajectory length of 40000 time steps and start from initial
conditions close to the true values of the couplings. The teacher
couplings are drawn as independent Gaussian random variables
with zero mean and variance V given by V = 1/NHID for Jib and
Jab, V = 1/NOBS for Jij and Jaj. The initial value of the couplings

was set to J initial
lm = J teacher

lm +N (0,
√
V/5) for all indices l,m.
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Appendix

6.A Details of the extended Plefka expansion

The Legendre transform of Lα with respect to the fields ψ,H,H, B̂, B̂ is given
by the following functional

Γα[µ, m̂, µ̂, , B,B] = Lα[ψ,H,H, B̂, B̂]−
∑

at

ψa(t)µa(t) + i
∑

it

Hi(t)m̂i(t)

+ i
∑

at

Ha(t)µ̂a(t)−
∑

it

B̂i(t)Bi(t)−
∑

at

B̂a(t)Ba(t),

(6.21)

where ψ,H,H, B̂, B̂ are determined by extremizing Γα according to the fol-
lowing set of state equations:

∂Γα
∂µa(t)

= −ψa[µ, m̂, µ̂, , B,B](t)

∂Γα
∂m̂i(t)

= iHi[µ, m̂, µ̂, , B,B](t)

∂Γα
∂µ̂a(t)

= iHa[µ, m̂, µ̂, , B,B](t)

∂Γα
∂Bi(t)

= −B̂i[µ, m̂, µ̂, , B,B](t)

∂Γα
∂Ba(t)

= −B̂a[µ, m̂, µ̂, , B,B](t).

(6.22)

It is convenient for the following calculation to rewrite Γα as

Γα = log

∫
DG Trσ exp[Ξα], (6.23)
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where

Ξα =
∑

it

si(t+ 1)gi(t) +
∑

at

σa(t+ 1)ga(t)−
∑

it

log 2 cosh[gi(t)]

−
∑

at

log 2 cosh[ga(t)]

∑

it

iĝi(t)

[
gi(t)−

∑

j

Jijsj(t)− α
∑

b

Jibσb(t)

]

+
∑

at

iĝa(t)

[
ga(t)−

∑

j

Jajsj(t)− α
∑

b

Jabσb(t)

]

+
∑

at

ψa(t)(σa(t)− µa(t))

− i
∑

it

Hi(t)(ĝi(t)− m̂i(t))− i
∑

at

Ha(t)(ĝa(t)− µ̂a(t))

+
∑

it

B̂i(t) (ĝ2
i (t)− Bi(t)) +

∑

at

B̂a(t) (ĝ2
a(t)− Ba(t)).

(6.24)

We then Taylor expand Γα around α = 0 up to the second order:

Γα = Γ0 + αΓ(1) +
α

2
Γ(2), (6.25)

where we have defined Γ(k) = ∂Γα/∂α
k|α=0. The 0-th term of the expansion is

given by

Γ0[µ, m̂, µ̂, B,B] = L0[ψ0, H0,H0, B̂0, B̂0]−
∑

at

ψ0
a(t)µa(t)

+ i
∑

it

H0
i (t)m̂i(t) + i

∑

at

H0
a(t)µ̂a(t)−

∑

it

B̂0
i (t)Bi(t)−

∑

at

B̂0
a(t)Ba(t),

(6.26)
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where

L0[ψ0, H0,H0, B̂0, B̂0]s = log

∫
DG Trσ exp

{∑

it

si(t+ 1)gi(t) +
∑

at

σa(t+ 1)ga(t)

−
∑

it

log 2 cosh[gi(t)]−
∑

at

log 2 cosh[ga(t)]

∑

it

iĝi(t)[gi(t)−
∑

j

Jijsj(t)] +
∑

at

iĝa(t)[ga(t)−
∑

j

Jajsj(t)]

+
∑

at

ψ0
a(t)σa(t)− i

∑

it

H0
i (t)ĝi(t)− i

∑

at

H0
a(t)ĝa(t)

+
∑

it

B̂0
i (t) ĝ

2
i (t) +

∑

at

B̂0
a(t) ĝa(t)

2

}
.

(6.27)

The fields ψ0, H0,H0, B̂0, B̂0 are the ones that satisfy the set (6.22) for Γα = Γ0.
The first derivative of Γ is computed from (6.23) as

Γ(1) =

〈
∂Ξα

∂α

〉∣∣∣∣
α=0

. (6.28)

Hence, from

∂Ξα

∂α
=− i

∑

ibt

Jibĝi(t)σb(t)− i
∑

abt

Jabĝa(t)σb(t) +
∑

at

∂ψa(t)

∂α
[σa(t)− µa(t)]

− i
∑

it

∂Hi(t)

∂α
[ĝi(t)− m̂i(t)]− i

∑

at

∂Ha(t)

∂α
[ĝa(t)− µ̂a(t)]

+
∑

at

∂B̂i(t)

∂α
[ĝ2
i (t)− Bi(t)] +

∑

at

∂B̂a(t)
∂α

[ĝ2
a(t)− Ba(t)]

(6.29)

we obtain

Γ(1) = −i
∑

ibt

Jib〈ĝi(t)σb(t)〉0 − i
∑

abt

Jab〈ĝa(t)σb(t)〉0

= −i
∑

ibt

Jibm̂i(t)µb(t)− i
∑

abt

Jabµ̂a(t)µb(t),
(6.30)

where the last equality follows from equations 6.6 - 6.10 evaluated at zero
couplings. The second order correction is computed from

∂2Γα
∂α2

=

〈
∂2Ξα

∂α2

〉

α

+

〈(
∂Ξα

∂α

)2
〉

α

−
(〈

∂Ξα

∂α

〉

α

)2

. (6.31)
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The first term on the right hand side of the above equation is zero, as one can
see from (6.29) and (6.6 - 6.10). One thus finds

Γ(2) =

〈(
∂Ξα

∂α
−
〈
∂Ξα

∂α

〉)2
〉∣∣∣∣∣

α=0

. (6.32)

To compute the above term we start from the set of equations

∂ψa(t)

∂α

∣∣∣∣
α=0

= − ∂

∂µa(t)

∂Γα
∂α

∣∣∣∣
α=0

= i
∑

i

Jiam̂i(t) + i
∑

b

Jbaµ̂b(t)

i
∂Hi(t)a
∂α

∣∣∣∣
α=0

=
∂

∂m̂i(t)

∂Γα
∂α

∣∣∣∣
α=0

= −i
∑

b

Jibµb(t)

i
∂Ha(t)

∂α

∣∣∣∣
α=0

=
∂

∂µ̂a(t)

∂Γα
∂α

∣∣∣∣
α=0

= −i
∑

b

Jabµb(t),

(6.33)

and insert it in (6.29) to find:

[
∂Ξα

∂α
−
〈
∂Ξα

∂α

〉]

α=0

= −i
∑

a

Jiaδĝi(t)δσa(t)− i
∑

b

Jabδĝa(t)δσb(t), (6.34)

where we have defined δĝi(t) = ĝi(t) − m̂i(t), δĝa(t) = ĝa(t) − µ̂a(t), δσa(t) =
σa(t) − µa(t). From this result, using (6.32) and the definitions (6.6-6.10) we
find:

Γ(2) = −
∑

iat

J2
ia

(
Bi(t)− m̂2

i (t)
) (

1− µ2
a(t)
)

−
∑

abt

J2
ab

(
Ba(t)− µ̂2

a(t)
) (

1− µ2
b(t)
)
.

(6.35)

The idea of the extended Plefka Expansion is to describe the system in terms
of an effective non-interacting log–likelihood, where the degrees of freedom
are coupled to effective local fields. The equations for the effective local fields
can be found by using (6.26, 6.28, 6.32) to compute Γα (6.25) expanded to
the second order, and insert the latter quantity in the set of equations (6.22),
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obtaining:

ψa(t) = ψ0
a(t) + i

∑

i

Jiam̂i(t) + i
∑

b

Jbaµ̂b(t)−
∑

i

J2
iaµa(t)

(
Bi(t)− m̂2

i (t)
)

−
∑

b

J2
baµa(t)

(
Bb(t)− µ̂2

b(t)
)

iHi(t) = iH0
i (t)− i

∑

b

Jibµb(t) +
∑

a

J2
iam̂i(t)

(
1− µ2

a(t)
)

iHa(t) = iH0
a(t)− i

∑

b

Jabµb(t) +
∑

b

J2
abµ̂a(t)

(
1− µ2

b(t)
)

B̂i(t) = B̂0
i (t) +

1

2

∑

b

J2
ia

(
1− µ2

a(t)
)

B̂a(t) = B̂0
a(t) +

1

2

∑

b

J2
ab

(
1− µ2

b(t)
)
.

(6.36)

We can now identify the effective local fields with the values ψ0, H0,H0, B̂0, B̂0

in (6.36), where we have set the auxiliary fields ψ,H,H, B̂, B̂ to zero. Inserting
(6.36) in L0 (6.27), we find the final result for the effective single site log
likelihood. Setting α = 1 we obtain:

L0[ψ,H,H, B̂, B̂] = log

∫
DG Trσ exp

{∑

it

si(t+ 1)gi(t) +
∑

at

σa(t+ 1)ga(t)

−
∑

it

log 2 cosh[gi(t)]−
∑

at

log 2 cosh[ga(t)]

+
∑

at

σa(t)

[
ψa(t)− i

∑

i

Jiam̂i(t)− i
∑

b

Jbaµ̂b(t) +
∑

i

J2
iaµa(t)

(
Bi(t)− m̂2

i (t)
)

+
∑

b

J2
baµa(t)

(
Bb(t)− µ̂2

b(t)
)
]

+
∑

it

iĝi(t)


gi(t)−

∑

j

Jijsj(t)−
∑

b

Jibµb(t)− i
∑

a

J2
iam̂i(t)

(
1− µ2

a(t)
)
−Hi(t)




+
∑

at

iĝa(t)


ga(t)−

∑

j

Jajsj(t)−
∑

b

Jabµb(t)− i
∑

b

J2
abµ̂a(t)

(
1− µ2

b(t)
)
−Ha(t)




−1

2

∑

it

ĝ2i (t)

[∑

a

J2
ia

(
1− µ2

a(t)
)
− 2B̂i(t)

]
− 1

2

∑

at

ĝ2a(t)

[∑

b

J2
ab

(
1− µ2

b(t)
)
− 2B̂a(t)

]}
.

(6.37)

To simplify the above equation, we can linearize the quadratic terms by
introducing two sets of Gaussian random variables: φi(t), independent for each

195



6 Networks with hidden units

i,and φa(t), independent for each a, with zero mean and covariance respectively
given by

〈φi(t)φi(t)〉 =
∑

a

J2
ia

(
1− µ2

a(t)
)
− 2B̂i(t),

〈φa(t)φa(t)〉 =
∑

b

J2
ab

(
1− µ2

b(t)
)
− 2B̂a(t).

Thus, L0 can be written in a form where each spin is coupled to an effective
stochastic local field in the following way:

L0[ψ,H,H, B̂, B̂] = log

∫
DG Trσ exp

{∑

it

si(t+ 1)gi(t) +
∑

at

σa(t+ 1)ga(t)]

−
∑

it

log 2 cosh[gi(t)]−
∑

at

log 2 cosh[ga(t)]

}

∏

a,t

exp

{
σa(t)

[
ψa(t)− i

∑

i

Jiam̂i(t)− i
∑

b

Jbaµ̂b(t) +
∑

i

J2
iaµa(t)

(
Bi(t)− m̂2

i (t)
)

+
∑

b

J2
baµa(t)

(
Bb(t)− µ̂2

b(t)
)
]}

∏

i,t

〈
exp



iĝi(t)


gi(t)− φi(t)−

∑

j

Jijsj(t)−
∑

b

Jibµb(t)

−i
∑

a

J2
iam̂i(t)

(
1− µ2

a(t)
)
−Hi(t)

]}〉

φi

∏

a,t

〈
exp



iĝa(t)


ga(t)− φa(t)−

∑

j

Jajsj(t)−
∑

b

Jabµb(t)

−i
∑

b

J2
abµ̂a(t)

(
1− µ2

b(t)
)
−Ha(t)

]}〉

φa

,

(6.38)

which corresponds to (6.12) with the set of relations (6.14-6.18).

6.B Sparse observations

Let us consider a model composed of one set of spins, whose configuration is
observed at the initial and at the final time step: {sa(0)}Na=1, {sa(T )}Na=1. The
log likelihood is given by

Lα[ψ,H,H, B̂, B̂] = log

∫
DG Trσ exp{Ωα[ψ,H,H, B̂, B̂]}, (6.39)
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where

Ωα[ψ,H,H, B̂, B̂] =
∑

a

sa(T )ga(T − 1) +
∑

a

t=T−2∑

t=0

σa(t+ 1)ga(t)

−
∑

a

t=T−1∑

t=0

log 2 cosh[ga(t)] +
∑

a

t=T−1∑

t=1

iĝa(t)

[
ga(t)− α

∑

b

Jabσb(t)

]

+ iĝa(0)

[
ga(0)−

∑

j

Jabsj(0)

]
+
∑

a

t=T−1∑

t=1

ψa(t)σa(t)

− i
∑

a

t=T−1∑

t=1

Ha(t)ĝa(t) +
∑

a

t=T−1∑

t=1

B̂a(t) ĝ2
a(t).

(6.40)

By following the same steps of the calculation in Appendix 6.A, one finds the
following result for the effective single site pseudo–likelihood:

L0 = log

{∏

a

〈
esa(T )ha(T−1)

2 cosh ha(T − 1)

〉

ha(T−1)

∏

a

T−2∏

t=1

Trσa

〈
eσa(t+1)[ha(t)+ua(t+1)]

2 cosh ha(t)

〉

ha(t)

cosh [ha(0) + ua(1)]

cosh ha(0)

}

(6.41)

where ha(0) =
∑

b Jabsb(0) and for t = 1 . . . T − 1 we have introduced the
gaussian variables ha ∼ N (γa, Va):

ua(t) = ψa(t)− i
∑

b

Jbaµ̂b(t) +
∑

b

J2
baµa(t)

(
Bb(t)− µ̂2

b(t)
)
,

γa(t) =
∑

b

Jabµb(t) + i
∑

b

J2
abµ̂a(t)

(
1− µ2

b(t)
)

+Ha(t),

Va = 〈φa(t)φa(t)〉 =
∑

b

J2
ab

(
1− µ2

b(t)
)
− 2B̂a(t).

The TAP equations obtained from (6.6-6.10) by setting to zero the auxiliary
fields at the end of the calculations are :

µa(1) = tanh[ha(0) + ua(1)],

µa(t) =

〈
tanh[ha(t− 1) + ua(t)]

cosh[ha(t−1)+ua(t)]
coshha(t−1)

〉
ha〈

cosh[ha(t−1)+ua(t)]
coshha(t−1)

〉
ha

, t = 2 . . . T − 1
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−iµ̂a(t) = µa(t+ 1)−

〈
tanhha(t)

cosh[ha(t)+ua(t+1)]
coshha(t)

〉
ha〈

cosh[ha(t)+ua(t+1)]
coshha(t)

〉
ha

, t = 1 . . . T − 2

−iµ̂a(T − 1) = sa(T )−

〈
tanhha(T − 1) e

sa(T )ha(T−1)

coshha(T−1)

〉
ha(T−1)〈

esa(T )ha(T−1)

coshha(T−1)

〉
ha(T−1)

Ba(t) =

〈(
1− tanh2 ha(t)

) cosh[ha(t)+ua(t+1)]
coshha(t)

〉
ha〈

cosh[ha(t)+ua(t+1)]
coshha(t)

〉
ha

−
Trσa

〈
(σa(t+ 1)− tanhha(t))

2 eσa(t+1)[ha(t)+ua(t+1)]

2 coshha(t)

〉
ha〈

cosh[ha(t)+ua(t+1)]
coshha(t)

〉
ha

, t = 1 . . . T − 2

Ba(T − 1) =

〈(
1− tanh2 ha(t)

)
esa(T )ha(T−1)

coshha(T−1)

〉
ha(T−1)〈

esa(T )ha(T−1)

coshha(T−1)

〉
ha(T−1)

−

〈
(sa(t+ 1)− tanhha(t))

2 esa(T )ha(T−1)

coshha(T−1)

〉
ha(T−1)〈

esa(T )ha(T−1)

coshha(T−1)

〉
ha(T−1)

.
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In this thesis, we combined ideas of statistical physics and machine learning
to study learning and inference in the Ising model, with a major focus on
its Glauber dynamics with parallel update rule. We showed how methods
borrowed from the statistical mechanics of spin glasses can be used both to
study analytically the average case scenario and to implement solutions for
single instances of the problem. We have restricted our analysis to large,
densely connected systems, with weak random couplings. First, this restriction
has allowed us to better understand the dynamics of the kinetic model, by
deriving a new mean-field solution valid for any degree of symmetry of the
network, via an extension of the Plefka expansion that includes second order
statistics in the formalism. The novel feature of our result is a memory term
appearing in the equation for the effective local fields, coupling each variable
to all its past values. The computation of these complex fields via a Monte
Carlo algorithm makes the method more computationally demanding with
respect to other mean field solutions, but more accurate in predicting single
site magnetizations. In fact, we conjecture that it provides the exact result for
the marginal distribution of spin trajectories, in the thermodynamic limit of an
infinitely large system. We leave the rigorous prove of this conjecture to future
work; one strategy would be to average our equation for the magnetization
over many instances of the network, and compare the result with the exact
dynamical mean field theory for the disordered average dynamics [EO94]. An
open question remains how to design an inference algorithm based on the
extended Plefka expansion, for learning the couplings between the spins based
on a set of observed trajectories.

We discussed the applicability of mean field approaches as inference tools
for dynamic data in the case of an asymmetric network, where the exact mean
field solution is known and a simple linear estimator based on this solution
has recently been proposed.

We compared the performance of this linear estimator to the asymptotic
performance of the maximum likelihood estimator, which has the property of
asymptotic efficiency; we also analysed the Bayes optimal estimator, which is is
asymptotically optimal if the prior corresponds to the distribution of the true
parameters. Working in the student-teacher scenario, we computed the estima-
tion error as a function of the size of the data set using the replica method. The
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Markovian dynamics, where transition probabilities are normalized individu-
ally, and the fast decay of two-times correlations in the asymmetric network
allow to treat the distribution of the data in a simplified scheme in the limit
of a very large system: using arguments based on a central limit theorem, we
remapped the problem of learning from one set of observed trajectories of T
time steps into the problem of learning in T independent perceptrons; in each
perceptron, however, the inputs are not independent but correlated through
the equal-time correlation matrix. We derived an exact result for the statistics
of the correlation matrix and consequently for the estimation error.

In the large α = T/N limit, the error of linear estimators is close to optimal
only for weak couplings, whereas it deviates from optimality for stronger cou-
plings. At finite values of α, the linear mean field estimator (the error of which
diverges when α→ 1) is outperformed by the optimal linear estimator. If the
correct prior knowledge on the distribution of the couplings is introduced, the
Bayes optimal estimator outperforms all the considered methods: we derived a
novel approximate algorithm to implement it, of the expectation propagation
type; it is computationally faster than maximum likelihood and it would be
interesting to understand whether it gives the exact solution in the large N
limit.

Our analysis for the error can be used as a benchmark for applications
when selecting a specific algorithm, and we found it relevant to extend it also
to the equilibrium case, where the exact computation of statistically efficient
estimators, such as the maximum likelihood estimator, is computationally in-
tractable for large systems. The intractability of the partition function also
introduces extra complexity in the replica calculation; for couplings that are
learnt independently for each spin using local cost functions, we tackled the
problem using cavity arguments that are valid as long as the Ising system
is in the paramagnetic phase. As in the kinetic case, the result explicitly
shows the influence of the correlation matrix on the estimation error. In con-
trast, the picture is surprisingly simpler, in that a mean field approximation
to the maximum likelihood estimator is asymptotically optimal and outper-
forms the the widely used method of pseudo-likelihood. Moreover, the local
cost function that achieves minimal error is of quadratic form. The explicit
optimal local estimator based on its minimization is symmetric, which poses
the question whether it also represent a global optimal estimator; it can be
simply computed by inverting the empirical correlation matrix, and depends
on a parameter that can be fully estimated from data. It would be interesting
to study how the results change at small temperatures, namely the spin glass
phase, where a more complex form of our cavity arguments has to be employed
and the non-ergodic behavior of the system has to be taken into account (see
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section 5.4).

Both for the kinetic and the equilibrium case, our results for the error are
exact in the thermodynamic limit, but agree very well with simulations of
finite systems. In order to provide a theoretical framework for comparing the
performance of various learning algorithms, we have restricted our analysis to
specific statistical ensembles of the teacher couplings, that allowed to derive
an analytical solution for the average case scenario, by using the cavity and
the replica methods of statistical physics. However, we have also proposed
two new algorithms for inferring the couplings that are valid for the single
instances of the network, namely the Bayes optimal estimator computed via
an iterative algorithm for the kinetic case, and the optimal local estimator
for the equilibrium case: while we have tested their performance on simulated
data, the next step that we leave to future work is to apply such inference
algorithms to real-world data, where we don’t have prior knowledge on the
distribution of the underlying network of couplings.

With the aim of applying our analysis to network reconstruction from real-
world data, it would be also relevant to study sparse networks. Biological
networks are indeed typically sparse, and using learning algorithms that are
targeted to dense networks might lead to over-fitting, some of the inferred
interactions reproducing noise rather than the true interactions. For the algo-
rithm and the analysis performed in a Bayesian setting, our formalism can be
applied to the sparse case by choosing a suitable prior over the couplings, for
instance a spike-and-slab prior (see section 4.5). For algorithms based on a cost
function minimization, the sparsity of the coupling matrix can be controlled
by adding a regularization term to the cost function. The computation of the
estimation error gets more complicated in this scenario: while, in the present
analysis, the correlation matrix affects the result for the error via the trace of
the inverse matrix, when a quadratic regularization term is added to the cost
function preliminary results show that the error becomes a more complicated
function of the matrix eigenvalues.

Another important aspect to bear in mind when addressing the problem
of reconstructing real-world networks is that typically only a tiny part of the
system is experimentally accessible. In the last part of the dissertation, we
have studied a recently-proposed extension of the kinetic Ising model, where
a subset of the spin trajectories is observed while the rest is hidden.

Current algorithms for learning the couplings in this model are of the expec-
tation maximization (EM) type, and iterate between computing the expected
value of the hidden units at fixed parameters (E-step), and updating the pa-
rameters to maximize the expected log-likelihood (M-step). Such algorithms
typically fail if the number of hidden units is too large (i.e., more than the 10%
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of the total units), presumably due to the error of predicting the hidden-spin
values in the E-step.

We provided a theoretical analysis for this problem, which can be used as
a yardstick for the applicability of this class of algorithms, by assessing the
theoretically optimal performance for predicting hidden spins. This has been
achieved by computing the average error of the Bayes optimal prediction of
hidden spin states, as a function of the the fraction of hidden spins and the
strength of the couplings, via a replica formalism.

We also studied single instances of the network: we applied our extended
Plefka expansion to derive a mean field result for the magnetization of hidden
spins that very well agrees with simulations of finite systems. This mean field
result can be used to address two different problems. One is the analysis of time
series data where observations are sparse in time, and the goal is to predict the
state of the spins at unobserved time steps; the other is the design of a novel
algorithm of the EM type to learn the coupling of a kinetic Ising model with
hidden nodes. We have discussed the main challenges that one faces when
addressing these problems, which appear to be interesting follow-up research
directions of our work.

We believe that our multi-disciplinary approach - at the intersection between
computer science, statistical physics and Bayesian statistics - contributed to
give new insights in the theoretical understanding of inverse problems on ran-
dom networks and provided new tools for implementing algorithmic solutions.
Many new questions have also been raised in the dissertation, which appear
to be fruitful avenues for future research.
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