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Abstract

In Density Functional Theory the main object of relevance is the systems particle density,
which, thanks to Hohenberg and Kohn [42], is known to uniquely determine the systems
ground-state and all other properties. It was due to Kohn and Sham [57] to benefit from this
information, by introducing a single-particle formulation for describing the multi-particle
problem. For incorporating interaction effects, they included an exchange and correlation
term in the effective potential. The resulting Kohn-Sham system is a nonlinearly coupled
system of partial differential equations, that has to be solved self-consistently. In this
work we are mainly interested in the quantum mechanical description of semiconductor
heterostructures. Thus, we will look at the involved Schrédinger operator in effective mass
approximation and have to deal with discontinuous coefficients and potentials.

For numerically treating the Kohn-Sham system, we will use the fixed point formulation
on basis of the particle density. A commonly used scheme for solving this problem is
the well-known linear mizing scheme, that corresponds to a damped Picard (or Banach)
iteration. However, this method is known to suffer from slow convergence and thus the
use of acceleration methods is advised. Using well-established acceleration schemes based
on the Newton-method, is possible, but the numerical costs for computing the needed
information about the Jacobian are quite big.

The aim of this work is the introduction of a fast and efficient acceleration method that
generalises the linear mixing scheme to higher dimensions. The basis of our approach will
be the direct inversion in the iterative subspace (DIIS) method from quantum chemistry. In
Hartree-Fock and Coupled Cluster calculations DIIS is used to accelerate the calculation
of electron orbitals. However, a straight forward transfer to our problem is dangerous.
This is due to the extrapolation ability of the DIIS scheme, leading to negative mixing
coefficients. Applied to our density approach, this may result in a negative density, meaning
an iterate lying outside of the solution space. Thus, when applying the DIIS scheme
to our problem, we have to ensure positivity of the produced density. We do this by
introducing further constraints on the coefficients, that ensure positivity of the computed
iterates. The resulting conver DIIS (CDIIS) scheme is then tested on exciton calculation
in a three-dimensional quantum dot example. The results show, that the CDIIS method
considerably accelerates the linear mixing approach, while in every step only a single
function evaluation is performed. Thus, the CDIIS scheme accelerates the calculation
while keeping the computational costs low and ensuring the quality of the iterates.






Zusammenfassung

Die Partikeldichte spielt in der Dichte-Funktional Theorie eine wesentliche Rolle und dank
Hohenberg und Kohn [42] ist bekannt, dass diese eindeutig ist und das zugrundeliegende
System bereits vollstdndig beschreibt. Mit dieser Grundlage, waren Kohn und Sham [57]
anschliefend in der Lage, das schwierig zu losende Vielteilchen-Problem durch eine ein-
fachere Einteilchen-Formulierung zu ersetzen. Wobei Wechselwirkungen durch Einfiigen
eines Austausch-Korrelations Terms in das effektive Potential eingebunden wurden. Ergeb-
nis daraus war das bekannte Kohn-Sham System, das ein nichtlinear gekoppeltes partielles
Differentialgleichungssystem darstellt, welches nun in selbst-konsistenter Weise gelost wer-
den muss.

In dieser Arbeit steht die quantenmechanische Beschreibung von Halbleiterbauelementen
im Vordergrund, so dass wir den beteiligten Schrodinger Operator in der Effektivmassen-
Approximation betrachten und auf Grund der Heterostrukturen springende Koeffizienten
und Potentiale behandeln miissen.

Grundlage der numerischen Behandlung ist eine Fixpunkt-Formulierung auf Basis der Par-
tikeldichte. Ein gangiges Verfahren zur Losung dieses Problems ist das linear mizing Ver-
fahren, welches einer gedampften Picard oder Banach Iteration entspricht. Die schlechten
Konvergenzeigenschaften von Dampfungsverfahren, fithrt dann zu der Notwendigkeit Be-
schleunigungsverfahren einzusetzen. Etablierte Verfahren auf Basis eines Newton-Verfahrens
konnen hier Abhilfe schaffen, allerdings ist der numerische Aufwand zur Berechnung von
Informationen iiber den Jacobian immens.

Ziel dieser Arbeit ist es, ein effizientes Beschleunigungsverfahren zu entwickeln, welches eine
hochdimensionale Verallgemeinerung des linear mizing Verfahrens darstellt. Ansatzpunkt
dafiir ist das direct inversion in the iterative subspace (DIIS) Verfahren aus der Quan-
tenchemie. Allerdings birgt ein direkter Ubertrag dieses Verfahrens auf unser Problem
deutliche Gefahren. Grund dafiir ist die Extrapolationseigenschaft des DIIS Verfahrens,
welche negative Koeffizienten erzeugt. Angewandt auf unser Problem bedeutet dies, dass
die zusammengesetzte Dichte moglicherweise negativ ist und somit bereits auflerhalb des
Losungsraums liegt. Daher muss sichergestellt sein, dass bei Anwendung des DIIS Ver-
fahrens nur positive Dichten erzeugt werden. Dies wird durch das Einfiihren zuséatzlicher
Bedingungen an die Koeffizienten erreicht, die die Positivitat der Dichte garantieren.

Das resultierende Verfahren wird als convex DIIS bezeichnet. Als Testbeispiel wird die
Exzitonenlokalisation in einem dreidimensional gerechneten Quantenpunkt verwendet. Die
Ergebnisse zeigen, dass das CDIIS Verfahren eine wesentliche Beschleunigung gegeniiber
dem einfachen linear mizxing Verfahren bedeutet und zudem lediglich eine einzige Funk-
tionsauswertung pro Schritt erforderlich ist. Zusammenfassend kann gesagt werden, dass
CDIIS die Fixpunktrechnung beschleunigt, aber gleichzeitig die Kosten pro Schritt gering
halt und zudem die Qualitat der berechneten Dichten garantiert.
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1 Introduction

The conceptual origin of the Kohn-Sham system is the fundamental paper written by
Hohenberg and Kohn [42] in 1964. There, the authors showed that the ground state of
a quantum mechanical multi-particle system is completely described by its ground state
density and all properties can be viewed as functionals of this density. This result subse-
quently was carried over to finite-temperature situations (equilibrium state) by Mermin,
[71]. Thus, in principle the wavefunctions for the ground state and all excited states of the
interacting many-particle system are determined by one scalar function depending on the
space coordinate only. However, the proofs for the so called Hohenberg-Kohn theorems
stated in [42] are pure existence proofs and thus, beside the knowledge about the exis-
tence of a unique density, there was no guidance for constructing these functionals. Hence,
one was still left with the task of solving the high dimensional many-particle Schrodinger
equation describing the behaviour of the quantum system.

It was due to the ansatz made by Kohn and Sham [57] that provided a possibility of ben-
efitting from this information. The major idea was to replace the many-particle equation
by a single-particle formulation. Meanwhile escaping the curse of dimensionality of the full
interacting system. Kohn and Sham introduced an effective potential that was designed
to produce the same ground state density for the single-particle system as for the inter-
acting many-particle system. In order to incorporate interaction effects, Kohn and Sham
inserted the so called exchange-correlation (xc) term. Although known to exist, the precise
appearance of the xc-term in its dependence on the particle density is still unknown.

Hence, making this ansatz practical one needs to establish approximations to the exchange-
correlation term, which remains the major task in the Kohn-Sham approach. The most
important type of approximation already used by Kohn and Sham, is the local-density
approzimation (LDA). LDA uses the exactly known exchange term for the homogeneous
electron gas as a description for the xc-term in the Kohn-Sham equations. Even though
LDA is known to be a poor approximation in situation where the density is strongly
inhomogeneous, it shows a surprisingly success in actual calculations, cf. [21, 76, 19].
Beyond LDA that solely uses information about the density, numerous advanced approx-
imations were developed over the years that aim on improving the exchange-correlation
term. Among others, these are generalised gradient approximations (GGA), meta-GGA’s
or hybrid strategies. GGA’s additionally incorporate information about the gradient of the
density, whereas meta-GGA’s use even more terms coming from the Taylor expansion. The
mentioned hybrid strategies also include interaction terms from other ab-initio methods
such as Hartree-Fock.

In our considerations we are mainly interested in the modelling of semiconductor devices
which especially means a bounded spatial domain for the problem, which is given by
the device domain. Furthermore, when regarding semiconductor devices, one is usually
interested in semiconductor heterostructures resulting in jumping material parameters.
The Schrodinger operator will be regarded in effective mass approximation, [96], leading
to discontinuous effective potentials as well.



From a mathematical point of view the Kohn-Sham system is a stationary Schrodinger-
Poisson system with self-consistent effective Kohn-Sham potential. The equations are
coupled via the electrostatic potential and the particle densities. The occurring partial
differential equations have to be supplemented by in general mixed boundary conditions
of Dirichlet and Neumann type, cf. e.g. [26, 24]. For the special cases of only one
kind of particles, homogeneous boundary conditions on both Poisson’s and Schrédinger’s
equation and without exchange-correlation potential results on the existence of solutions
are carried out in the work by Kaiser and Rehberg [46] and Nier [72, 73]. Without exchange-
correlation potential the Schrodinger-Poisson system is a nonlinear Poisson equation in the
dual of a Sobolev space determined by the boundary conditions imposed on the electrostatic
potential. The involved operator is strongly monotone and boundedly Lipschitz continuous,
[45]. Hence, the operator equation has a unique solution, cf. [46, 73]. In presence of an
exchange-correlation term, the system can no longer be written as a monotone operator.
Instead, the result for the system without exchange and correlation can be used to set up a
fixed point mapping, which meets the conditions of Schauder’s fixed point theorem giving
existence of solutions, cf. Kaiser and Rehberg [47, 49, 50, 48]. The results just stated
include mixed Dirichlet-Neumann boundary conditions as well as jumping coefficients that
model heterointerfaces. The underlying statistics, e.g. represented by Fermi’s function cf.
[71], are assumed differentiable. Cornean, H., Neidhardt, Racec and Rehberg showed in
[15] that for effectively one-dimensional problems this assumption can be softened to only
asking for continuity which then gives existence of solutions for the zero-temperature case.
Motivated by a result from Gajewski and Griepentrog [27] about a descent method for
the free energy of a multi-component system, there are indications that analyticity might
be an advantageous property for setting up steadily converging iteration schemes. The
corresponding result about analyticity of the particle density operator was shown by H.,
Kaiser and Rehberg in [43].

Concerning the numerical treatment of the Kohn-Sham system, there are mainly two pos-
sibilities: 1) iterative methods for finding the self-consistent solution by a fixed point pro-
cedure, ii) direct approaches for determining the minimum of the total-energy functional.
The latter are based on the fact that the Kohn-Sham energy functional is minimal at the
ground (equilibrium) state. Minimising schemes usually are conjugate gradient (CG) type
approaches, meaning minimisation along a given search direction that is conjugate to pre-
vious directions. A main problem in these kind of approaches remains the incorporation of
the orthonormality conditions for the orbitals, cf. [60]. In this work we will focus on meth-
ods of type 1), the self-consistent solution by means of fixed point iterations. The basis of
such methods is a reformulation of the Kohn-Sham system as a fixed point mapping. Given
an input-density n/" at iteration i, the corresponding effective potential is calculated. With
this, the eigenstates of the resulting Hamiltonian are computed which then are used for
the composition of an output-density n?“*. This procedure is called the self-consistent loop
(SCL). In terms of fixed point iterations this just means a Picard (or Banach) mapping.
The simplest consequential approach following the SCL idea is the linear mixing method,
cf. [68], where an improved input-density is computed as a fixed linear combination of the



previous input- and output-densities:

n'ty = an? + (1 —a)n” =n" + a(n™ —n"), «a€(0,1]. (1.1)
This corresponds to a fixed damping of the underlying Picard iteration and as such it
often suffers from slow convergence, due to strong damping, i.e. a < 1. However, a
merit of the linear mixing scheme is the non-expensiveness of a single iteration step. In
absence of further information n¢* —n'" is considered the best choice for a steepest descent
direction. More advanced mixing schemes additionally use information about the Jacobian,
e.g. Broyden [8, 93] or Newton-type [53] approaches. However, this includes storage of the
Jacobian itself or at least a growing amount of information about it during the procedure

making it storage expensive.

In this work we develop a high dimensional generalisation of the linear mizing scheme which
on the one hand leads to a considerable acceleration of the process, making it comparable
to Newton-type schemes, and on the other hand keeping the computational cost of a single
step low.

The starting point of our considerations beside the iteration in a SCL, will be the direct
inversion in the iterative subspace (DIIS) procedure invented by Pulay in 1980, [80]. This
subspace acceleration method is used in ab-initio calculations like Hartree-Fock, [40], or
Coupled Cluster, [40, 97], from quantum chemistry. It is used there for accelerating the
calculation of orbital sets. In our formulation of the fixed point mapping for the Kohn-Sham
system the main object of relevance is the density n instead of the orbitals, which only
appear in the composition of the density. Thus, we have to deal with a certain speciality of
the DIIS method. Namely its extrapolation ability, allowing the mixed states to lie outside
of the convex hull. This however, is devastating for our density approach since the produced
densities may be located outside of the solution space, i.e. be negative at some point in
real space. To make use of the DIIS approach anyway, we thus have to make sure the
mixing scheme yields a density that is positive in every point. We will do this by imposing
further constraints on the mixing coefficients. This results in an increase of computational
effort for determining the coefficients but this is a low dimensional problem compared to
the dimension of the original problem. With this we were able to transform the orbital-
based DIIS procedure in an adequate density-based one which is quite different in nature,
e.g. introducing further constraints on the coefficients but dropping the orthonormality
constraint of the mixed objects. The use of the pure DIIS scheme in DFT is sometimes
done in quantum chemistry and is then denoted as Pulay mizing. Actually, this approach
may work, but it does not respect the nature of the underlying problem, e.g. positivity of
the density. Though used this attempt is known to sometimes suffer from slow convergence
or even fail, cf. Harrison [39]. In this situations one tries to help out by introducing a
damping like in (1.1) on the just calculated optimal iterate. This however, leads to similar
problems in the convergence as in simple linear mizing and additionally another solution
of the Schrodinger eigenvalue problem has to be calculated in every step, making it even
more expensive.



We call our resulting acceleration scheme for the density based iteration procedure con-
vex DIIS (CDIIS). The CDIIS scheme only takes a single SCL iteration and thus is as
cheap as linear mizing. Furthermore, the numerical tests show a performance similar to a
comparison scheme, [54, 56, 53, 55, 52, 53], based on a Newton-type acceleration. Since
the computationally most expensive part of the SCL is the solution of the Schrodinger
eigenvalue problem, we will judge the performance of the schemes by the number of solved
eigenvalue problems. We thus end up with a cheap but fast scheme for finding the self-
consistent solution to the Kohn-Sham system by simultaneously ensuring the iterates lying
in the solution space.

The organisation of the work is as follows. In Section 2 we will give an overview of the origin
of the Kohn-Sham system with a focus on semiconductor devices. Section 3 is devoted to
analytical considerations like existence of solutions and properties of the particle density
operator. A detailed description of the physical example used for the numerical tests can
be found in Section 4. Finally, Section 5 deals with the numerical treatment of the Kohn-
Sham system. There, we will present some mathematical background of the DIIS scheme
and embed it in a general acceleration framework based on a main iteration and an error
rating. Furthermore, we will introduce the CDIIS method and compare it to the simple
linear mixing scheme and a Newton-type accelerated scheme.



2 The Kohn-Sham System

In the first section we will have a look on the origin of the Kohn-Sham system with special
interest in its appearance in semiconductor device modelling. The Kohn-Sham theory is an
approach of describing a quantum mechanical many-particle problem in a single-particle
formulation, meanwhile providing a possibility of escaping the curse of dimensionality.
There are many textbooks giving a detailed introduction to the topic, e.g. [76, 61, 19, 21,
10, 68]. Hence, we will only give a short overview, aiming on the application we have in
mind.

To start with, we will describe the full many-particle problem and the corresponding op-
erators arising in quantum mechanics. For comparison we then describe the well-known
Hartree-Fock method, that uses Slater determinants in order to reach a single-particle
formulation of the problem. By use of the Hohenberg-Kohn theorems, we then get to the
Kohn-Sham system, which is an effective single-particle formulation similar in structure to
the canonical Hartree-Fock equations. Afterwards, the local density approximation (LDA)
will be used to represent the exchange-correlation potential. And finally, the resulting
Schrédinger-Poisson system that is adequate for describing semiconductor heterostructures
is introduced.

2.1 Modelling Aspects

The electronic Schrodinger Equation

In quantum mechanics the dynamics of a many-particle system is described by the elec-
tronic Schrodinger equation. When regarding a time-independent N-particle system in
Born-Oppenheimer approximation, the corresponding eigenvalue equation for the systems
wavefunction W(xy,Xa, ..., Xy) reads

HY = EV . (2.1)

Where the Hamilton operator is given by

Voo N 1 & 1
H:§ (——V$)+§ 'U(xl-)—i-—i — (2.2)
i#]

Here, E denotes the electronic energy. The degrees of freedom x; split up in a space
coordinate z; € R® and a spin degree of freedom s;, i.e. x; = (z;, s;). The function v(z;) is
the potential of the external field acting on electron ¢ due to the nuclei « of charges 7, at
positions a,

o(z) = —Zﬁ. (2.3)



Remark 2.1. Throughout this work we will use atomic units. These are the Bohr radius
ag (= 0.52924) as a length unit, the elementary charge q (= 1.6022 x 10~'°C') as a charge
unit and the mass of the electron m. (= 9,1094 x 10~ kg ) as a mass unit. See Appendix
A for a complete discussion of the scaling. Furthermore, we will assume the orbitals to be
doubly occupied and thus, neglect the spin variable s; in the following.

More compactly we write
H=T+ Vne + ‘/ee )

the individual terms represent the kinetic energy operator

T = Z ——V2 (2.4)

the nucleus-electron attraction operator

T e (26)

To get the systems total energy W we lastly need to add the nucleus-nucleus repulsion
energy

Lol
= laa — ag|
That is,
W=FE+V,,. (2.8)

Remark 2.2. [t makes no difference, whether (2.1) is solved using E and adding W
afterwards or solving the Schrédinger equation with W instead of E, cf. [21, 76].

Solutions to (2.1) are given by the eigenfunctions Wj together with the corresponding

eigenvalues Ej, of the operator H. The set {U} is complete and may be taken orthogonal
and normalised (in L%((R*)™)),

[ i) ds = (v v = o 29)

Moreover, we expect the particles to have an indistinguishability property. This means,
that we are not able to discriminate between two particles, and thus, have to look for a

6



solution in a symmetry constraint subspace of L?. More precisely, we look at fermions
whose wavefunction ¥ has to be anti-symmetric in the sense that for every permutation
P of particle coordinates x = (x1,...,zy) we have

U(Px) = sign(P)¥(x).

For an arbitrary wavefunction ¥ the expectation value of the energy is given by

v HY
E[V] = —< : ) .
(U, ¥)
In quantum mechanics one is usually interested in the systems ground state, i.e. a wave-
function ¥y and the corresponding energy E[W,] solving the minimisation problem

E[V,| = m\I}nE[\IJ] = m\gn{(\D,H\P) (U, U) =1}
Using calculus of variations the latter formulation can be written as

where the energy F, serves as the Lagrangian multiplier associated to the normalisation
constraint (¥, W) = 1. Since we are interested in states of finite energy we have to assume
L? integrability of the first derivative in order to give the kinetic energy operator T a
proper sense. Hence, we further restrict the solution space from L?((R*)™) to W2((R3)™).

Unfortunately, this problem cannot be tackled for more than a few particles (small N), due
to the high dimensionality. Thus, in order to handle this task one has to find ways of either
decreasing the dimension itself (e.g. replacing the problem by an easier one) or choosing
an adequate low-dimensional subspace to search the solution in. The latter approach is
use by the Hartree-Fock (HF) method, which will be described in the following. After
that we will present the idea of using density functional theory (DFT) to replace the 3N
dimensional problem by a three dimensional one. Although the ideas behind HF and DFT
are quite different in nature, the resulting systems are of similar structure.

The Hartree-Fock Approximation

One of the most commonly used procedures in approximately calculating the systems
ground-state, is the Hartree-Fock (HF) approximation. The basic idea is to use a separation
of variables in the form

U(zy,...,2n) = @(x1) ... o(TN) .
This however, does not respect the anti-symmetry constraint (the Pauli principle) for
fermions. To fulfil this condition the wavefunction is written as a Slater determinant

Upp(xy,...,zN) = \/% det(p;(z;)) = \/% Z sign(o) H ©i(Zo(i) » (2.10)

: O'ESTL



where the sum goes over all permutations of the numbers {1,..., N} (Leibniz formula).
The ansatz-functions ;, called orbital functions, essentially are one-particle wavefunctions
lying in W12(R3). When further applying an orthogonality condition on the orbitals, i.e.

(i, 05) = bij (2.11)

then Wy € W2 ((R3)N) fulfils
(Vir, Yar) =1.

Remark 2.3. This choice of determinantal form is appropriate for the mnon-interacting
case, i.e. Ve = 0, but for interacting systems it is a real constraint. This is due to the
intrinsic assumption of the electron positions to be independent variables, which is not
true. We thus loose some correlation between the particles, see [10] for further details.
Nevertheless, the computed energy is allways an upper bound to the true energy. The error
15 the so called correlation energy.

Inserting (2.10) in (2.1) and using the Slater-Condon rules (cf. [40]) for the occurring
single- and two-particle operators, yields the representation of the energy (for the closed
shell restricted Hartree-Fock method, [76])

Epp = (Uyp, HUyp) = i (21{ + Z i — = Kij ) (2.12)

=1
with
1
H, = / V@) 4+ Vie()lor (@) de (2.13)
Ty = / |02 |%I_IsOyﬂ )l dy dz (2.14)
Ix—yl

The J;; are called Coulomb (energy) integrals and the K;; exchange (energy) integrals.
Minimisation of (2.12) subject to the orthonormality conditions (2.11) gives the Hartree-
Fock differential equation

HHFSOz Z/\z]SOJ (216)

where the Hartree-Fock operator Hyp is given by

1
Hpyp = —§V2 +Vaet+g (2.17)



with the Coulomb-exchange operator g(x) = j(x) — k(z) given by

o) = 3P )y (2.18)
Hoputo) = 53 Rl ay, (2.19)

here u is an arbitrary function. The first term, also called the Hartree-term, describes the
electrostatic (or Coulomb) interaction of the charge distribution with itself. The second
is due to the Pauli exclusion principle, i.e. the anti-symmetry of ¥y, and is of purely
quantum nature. The matrix A in (2.16) contains the Lagrange multipliers associated
with the orthonormality constraints (2.11). Since the Hartree-Fock wavefunction Uy p is
invariant under unitary transformation of the orbitals {;}, we can assume the matrix A
to be diagonal. This results in the canonical Hartree-Fock equations which, have the form
of effective single particle Schrodinger equations,

These equations are much more convenient for calculation than (2.16).

Density matrix function and electron density

In what follows we want to write the Hartree-Fock approximation in a slightly different
(and more compact) way that will make it easier to compare it with the upcoming equations
originated in DFT. For a given set of orbitals {¢;} the density matrix function and the
electron density are defined by

pley) = D wil@)wily), (2.21)

n(z) = pla,z) = (). (2.22)

Since the orbitals are normalised, integrating n over R, yields the total number of electrons
in the system

/n(w)da::N.

Using (2.21) and (2.22), we firstly rewrite the energy (2.12) in the form

N
1 1 1 1
) B - . . N+ oyt o) 9 9
2 HF ; 9 <v(1017 VS01> + <Vne§017 301> + 9 <VH§01, Q01> 4<W§0“ g01> ( 3)



Remark 2.4. Note that we will use the same symbol for the potential and the operator
indicated by it, e.q. Ve € X and V. 1 Y — Y’ with proper spaces X and Y . It should be
clear from the context how the symbol has to be understood.

The terms Vi and W are called Hartree potential and exchange energy term, respectively.
Both of which can be written in terms of n and p. To see this we first regard the sum of
the Coulomb integrals (2.14)

ii% _ ZZ/ e @Ples @ o,

i=1 j=1 i=1 j=1 |z =yl

- Z/(/ Zealotol )rmxn?dx.

/ S leily (2.24)

Il‘—yl

Defining

|z — yl
we further get

Z/VH(x)]goi(x)Fdx: /VH(x)Zm(x)Fdx: /VH(x)n(x) dz . (2.25)

Remark 2.5. Defining the Hartree potential by (2.24) is only one possibility. Since it
describes electrostatic interaction effects (Coulomb interaction) of the electrons, Vi can be
as well calculated by solving Poisson’s equation in terms of the charge distribution given by
n, see (2.37).

Secondly we regard the exchange integrals (2.15)

ZZKij _ / |901 QOZ ||QOJ( ) ( )|dydx

i=1 j=1 | |

= Z/ (/ e 1’|;Oj_y| 1 ”%(y)dy) pi(z) da .

When comparing this with the last term in (2.23), we see that W is the mapping

2] (@ )|u _ p(a:,y)u
/ Ix—yl W)dy = |z — y] W)

Rewriting Z?Ll(‘/negpi, ;) analogous to (2.25) we get a representation of the Hartree-Fock
energy in terms of p and n

N | 2

%EHF:Z%<V@i7V¢i>+/Vne($)n(x)dx+%/VH( yn(z) d __/ otz y)I

drdy.
|z =yl

=1

(2.26)
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which means 1 !
Hyp = _§v2 + Ve + Vg — 5W. (2.27)

The Hohenberg-Kohn Theorems

The following theorems, first stated by Hohenberg and Kohn [42] in 1964, yield the main
reasoning behind density functional theory. Formally it is an exact theory for many-particle
systems and applies to any system of interacting particles. In this approach the basic vari-

able is the electron density (2.22), from which in principle all other quantities can be
deduced.

Theorem 2.6 (HK Theorem I [68]). For any system of interacting particles in an external
potential Vi (x), the potential Ve (x) is determined uniquely, except for a constant, by the
ground state density no(x).

Theorem 2.7 (HK Theorem II [68]). A universal functional of the energy E[n] in terms of
the density n(x) can be defined, valid for any external potential Vi (x). For any particular
Veet(x), the exact ground state energy of the system is the global minimum value of this
functional, and the density n(z) that minimises the functional is the exact ground state
density ng(z).

Although the proofs of these theorems are quite simple, we refer to [76, 68| for details. Let
us just mention that they work by contradiction.

Since, together with the external potential V. (z), the Hamiltonian is fully determined
except for a constant energy-shift, and all states are determined as well. Therefore, by
Theorem 2.6 all properties of the system are completely described by the ground state
density ng(z). Further using Theorem 2.7 we find that the energy functional E[n| alone is
sufficient to determine the ground state energy and density.

Following the advanced formulation of Lieb [66] we can thus reformulate the functional
dependence on the (external) potential V. into a functional dependence on the density n
(by substituting V,,.[n]) and define the Hohenberg-Kohn functional by

Fuk[n] = E[n] — /Vne[n}ndx, neA,

where A,, denotes the class of pure-state v-representable densities, i.e.
A, = {n(x) : # € R’; n comes from an N-particle ground state} .

And thus get the energy E[V,.] for a given potential as

E[Vi,] = min {FHK[n] + / Vne[n]ndx}

’I’LeAn
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Remark 2.8. Note, that for a non-degenerate ground state the definition of Fyg[n] just
reduces to T'[n] + Vee[n], i.e. the kinetic and electron-repulsion operator which are uniquely
determined in this case. This formulation was originally used by Hohenberg and Kohn,
who had to incorporate the non-degeneracy condition. Using the formulation of Lieb this
condition can be dropped, since by definition of Fyr, constant shifts of the potential cancel
out and simultaneously Fyr finds the correct minimum, cf. [21, Ch. 4] for details.

Unfortunately, as was mentioned, the proofs of the theorems are not constructive and none
of the occurring objects (A, Furk, F[n]) is known explicitly. So, even though we know
that ng(z) determines V,,;(x) uniquely, we are still left with the task of solving the many-
particle problem. It was due to Kohn and Sham in 1965 to find a way of benefitting from
this information. This was the starting point of the famous Kohn-Sham system, which we
will present now.

The Kohn-Sham System

The idea of Kohn and Sham was to replace the interacting many-particle problem by a non-
interacting one which yields the same ground state density. Following the idea of Hohenberg
and Kohn, Kohn and Sham stated a similar uniqueness result for non-interacting particles.
Thus, there is an effective potential V. s for a non-interacting system which yields the same
ground state density as the interacting system. Of course the corresponding potentials
Vewt and V,¢; cannot be the same, rather the non-interacting potential somehow has to
incorporate the many-particle effects, in order to produce the correct density.

When treating a non-interacting system, the HK-functional is just the corresponding ki-

netic energy
Fign] =T°[n],

where the superscript 0 indicates the non-interacting case. Of course even this functional
is not known explicitly, but according to the HK-Theorems its existence is guaranteed.

Remark 2.9. For interaction-free particle systems of fermions, there always exist a deter-
minantal ground-state in form of a Slater-determinant (2.10), cf. Remark 2.10. In case
of degeneracy, linear combinations of determinantal states may be used as ground states
as well. But, densities derived from linear combinations may not be reproducible by single
determinantal states. Thus a slight change in the domain of T° to

AY = {n(z) : z € R*; n comes from a determinantal N-particle ground state}
is necessary, cf. [66, 21].

The kinetic energy for a given density from A? is then given by

N

T = Y @) = 5 3 (Tula), Vi)

i=1

12



Furthermore, we have to assume orthonormality of the orbitals, i.e.

N

To[n} = min {% Z(th(x)v V@DZ(ZL’» <¢17¢J = Z] > Z W}z } .

=1

The corresponding energy for an arbitrary potential V' is then given by

E°lV] = min{ /v ndx}

= min{Z( (Vihi(x), Vb (x)) +<V¢¢($),¢i(l')>) (i, ) :&'j} )

i=1

Introducing Langrangian multipliers ¢; representing the side conditions, we end up with a
set of one-particle Schrodinger equations

{——VQ + V} v = €, (2.28)

for the NV orbitals, that are lowest in energy.

Remark 2.10. When assuming the potential V to be known and fized, the problem is
separable and thus the solution is given as a product of solutions ¥; of (2.28). Hence, ¥
is a single Slater determinant.

Knowing this, the HK-functional of the interacting system can be decompose to
Fuk[n] = T°[n] + Ex[n] + En] .

where Ep denotes the Hartree term according to the Hartree potential, cf. (2.26). This
equation is the defining relation for the exchange-correlation energy E,., which has to exist,
since all other terms are known to be functionals of n. It holds

Eyen] = T[n] — T°[n] + Vie[n] .

This decomposition can be understood in the following way. The density n belonging to the
interacting system is described as a density belonging to a special system of non-interacting
particles. The omitted particle interactions are put into the new term FE,., which is known
to exist due to Hohenberg and Kohn. All together, the systems energy is now given by

N

E[V,e] = min {Z (%(V%(z), Vi (z)) + (Vaethi(x), ¢Z($)>) + Ey[n] + E.c[n]
() = M—Zm }

13



Again treating the side conditions with Lagrangian multipliers, the resulting Schrodinger
equation reads

{—%VQ + Veff] i = Nt (2.29)

with
‘/eff = Vne + Vi + ‘/xca (230)

where Vp is again the Hartree-potential belonging to the electrostatic charge distribution
and the exchange-correlation potential V. is defined by the variation of E,. with respect
to n, i.e.

~ OE,.

~ On(x)

Equations (2.29) and (2.30) together with (2.22) form the famous Kohn-Sham system.
Comparing (2.29) with (2.27) from HF theory, we formally see the only difference in the
terms V. and —%W. Both attempts lead to one-particle formulations, but the basic
ideas behind are completely different. In HF the assumption is that the electron positions
are independent variables, which is not the case. Roughly speaking, HF tries to find an
interaction-free solution to an interacting problem, meanwhile accepting a certain intrin-
sic error. In contrast to that, the Kohn-Sham approach is formally exact by treating an
interaction-free reference system that yield the correct density of the system with interac-
tion. This reference system, or more precisely the potential leading to this system, is known
to exist. The task now lies in the precise appearance of the potential term representing
the interaction effects, i.e. exchange and correlation, which then are fully incorporated.
Further note that the (physical) meaning of the orbital functions ¢; in the HF and KS
approach are quite different. The HF orbitals represent the real orbitals belonging to the
occupied states, whereas the orbital functions in the KS approach are those of the ref-
erence system and as such only the density produced has a physical meaning. Compare
(19, 10, 76, 62, 68] for more details on physical interpretation of the KS approach.

Vie()

The greatest challenge in the Kohn-Sham approach is to find an explicit form (or at least
a good approximation) of the exchange-correlation term. In the following the simplest
approach already used by Kohn and Sham is described. The ansatz is to assume the
same structure for the exchange-correlation part as for the nucleus-electron and Hartree-
potential, cf. (2.27), which are given as integrals of the form

/V(x)n(:c) dz .

Using the simplified view as uniform electron-gas we get to the so called local density
approximation (LDA) for the exchange and correlation energy.

ELPA] = /ch[n](m)n(m) dz . (2.31)
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Vze[n] indicates exchange and correlation per particle of the uniform electron gas of density
n. It can be divided into an exchange and a correlation contribution by

Vae(n) = Va(n) + Ve(n) . (2.32)

When using Dirac’s exchange-energy formula, cf. [76, Ch. 6], an explicit form of the
exchange part is found to be given by

Vo(n) = =Con(2)"®,  Cp = % (%)1/3 . (2.33)

This yields the exchange energy

EEPAf)(2) = -

Q) e

1w

and the exchange potential

VEAp) = (2n(o)) " (2.3

The term V,[n] is more complicated, since even for the uniform electron-gas only few ana-
lytic expressions are known (or suggested) and in addition these are limiting cases.

The uniform electron-gas assumption is applicable to systems of slowly varying densities,
but for atoms and molecules it cannot formally be justified. Nevertheless, numerical appli-
cations showed a surprisingly well agreement with experimental data. One of the reasons
for this is a systematic cancellation of errors that can be shown even for general systems.
A more detailed discussion of the LDA method and its success can be found in [19, Ch. 7]
and [11].

In LDA the xc-energy is given by an integral of the form

E..[n] :/f(n(x))dx

A generalisation to this can be found by allowing the function f to depend on the (higher
order) gradients of the density n as well, e.g. f(n(z), Vn(z),...). This leads to generalised
gradient approzimations (GGA). The choices of f are usually parameter-fitted to experi-
mental data, such that a certain GGA approach usually has a stronger restriction on the
problem at hand, cf. [11]. However, common LDA or GGAs still fail for describing van der
Waals interactions. To overcome this, several other approaches came up, such as hybrids
or Meta-GGAs, cf. [11, 19].
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Finite Temperature Extension

The presented formalism is built to describe the zero-temperature case. For systems at
finite temperature the equilibrium state is the analogon to the ground-state. This gener-
alisation was first done by Mermin [71] in 1965. The associated electron density is then
given in the form

= Zfz‘\%(@ﬁ (2.36)

where the f; = f(A\; — p) are called occupation numbers. The function f yields values
in [0,1] and represents fractional occupancy according to the underlying statistics that
describes the distribution of particles over energy states. The real number p denotes the
Fermi-level, the position of which determines the carrier densities of the semiconductor in
thermodynamical equilibrium.

In what follows we want to model semiconductor devices in effective mass approximation,
cf. [90, Ch. 13]. In case of a three dimensional bulk material the nanostructure can be
characterised by the number d of band discontinuities. For d = 0 there is no nanostruc-
ture, for d = 1 there is a two dimensional electron gas in a quantum well, for d = 2 its a
one-dimensional gas in a quantum wire and d = 3 describes a quantum dot.

According to the number of discontinuities d the distribution function f takes different
forms, related to Fermi’s integrals F,, cf. [26]. More precisely (cf. [47, Appendix]), for
an ensemble in a quantum dot, i.e. a number of band discontinuities d = 3, f is given by

Fermi’s function
S C3

k;BT) "1 +exp(iig)

f(s) =3 Fa(—

kp denotes Boltzmann’s constant and 7" the temperature of the carrier gas. For the one-
dimensional carrier-gas in a quantum-wire, d = 2, it is

Nz\»—t

0

dg

o7)

and for the two-dimensional carrier-gas in a quantum-well, d = 1, f is given by

F(s) = er Fo(1 + exp(—kBiT)) — ¢ ln <1 T exp(—kBiT>>

The constants ¢y, ¢o and c¢3 depend on the semiconductor material.

Remark 2.11. These expressions for the distribution function apply for both, electrons and
holes. For electrons the energy is scaled on the usual axis whereas for holes it is counted
on the negative axis.
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Poisson’s Equation

Finally we have a closer look on the Hartree potential V describing the electron-electron
repulsion. As was already mentioned in Remark 2.5, Vi describes the effect of electrostatic
interactions of the particles. Thus, Vy is given as the solution of

—VQVH(QS) =47 Z €oNy (2.37)

which is Poisson’s equation in atomic units, since the dielectricity constant ¢y then takes the
value ﬁ. The sum goes over all occurring types of charged carriers o and the corresponding
densities are denoted by n,. The factors e, describe the charge of a single o-type carrier,
i.e. —1 for electrons and 1 for holes. Knowing this, we replace Vg by ¢, which is the
solution of Poisson’s equation

—eV2o =) e, . (2.38)

e

In this way we can describe semiconductor heterostructures by making the dielectricity

position dependent. Additionally, an effective doping D of the semiconductor material can
be included by adding it to the right-hand side of (2.38)

—VeVp =D+ eon,. (2.39)
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2.2 Semiconductor Heterostructures

The main application we have in mind is the modelling of semiconductor heterostruc-
tures. This forecloses some adjustment of the Kohn-Sham system just presented. First of
all, semiconductor devices have a predetermined device domain 2 € R™ that is bounded.
Hence, we will search for solutions not on the whole of R™ but instead on the bounded set §2.
Inside the device we allow for different types of charged carriers indicated by £ € {1,...,0}
with a charge e¢, e.g. e¢ = —1 for electrons and e = 1 for holes. Each species has a fixed
number of particles V¢ that is conserved. Furthermore, we allow for an effective doping,
given by a profile D over the device domain.

The Kohn-Sham system now has to be solved for a vector of carrier densities n = (nq, ..., ng)
and the electrostatic potential (.

The densities are given by the expression
n(z) =Y fehie = Ereltig(@)*,
i=1

with occupation factors fe(\i¢ — Ep¢) and Fermi levels Ep¢. The \;¢ are the eigenvalues
(counting multiplicity) and ;¢ the eigenfunctions of the corresponding Schrédinger op-
erators in effective mass approximation. This means we incorporate the periodic crystal
structure of the semiconductor material by adjusting the mass of the particle. In this way
the influence of the crystal on the mobility of the particle is taken into account. How-
ever, since we deal with heterostructures, this effective mass differs throughout the device
domain 2. Thus, the Hamiltonian is given by

1_1
—5V Ve ie = Nig Q,

with m¢ the material dependent effective mass and V. s ¢ the effective Kohn-Sham potential
depending on the carrier densities

Verreln] = —eeVoe + Vice[n| + ecoln] .

Here @[n] denotes the electrostatic potential, which is the solution to Poisson’s equation

—VeVp =D + Z@gﬂg on (),
1

where € is the material dependent dielectricity.

The given external potentials Vj ¢ are the piecewise constant band-edge offsets, that rep-
resent the heterostructure in the effective mass approximation. V,.¢[n| is the exchange-
correlation potential describing the particle interactions. It is given by the LDA expression,
cf. Appendix A
3 1/3
Vieelile) = = (2n(a))

™
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The real numbers £p¢ are the Fermi-levels of the {-type carriers. They are defined by the
conservation law for the corresponding carriers

/ns(w) dz = Z fe(Aig — Epge) = Ne.

Q

Ere is well defined, due to the decaying properties of the distribution functions f¢, which
take different forms depending on the dimension d of the carrier gas, cf. [47, Appendix].

-1 ifd=3

S .
[(9) = eFal—pg) . =1} ifd=2.
0 ifd=1

F.. denotes Fermi’s integral, cf. previous section.

Finally we have to set appropriate boundary conditions. Concerning the electrostatic
potential ¢ we regard the following ones

e=¢1 onl', —(1,eVy)=blp—@) ondQ\T

where I' is a closed subset of the boundary 0€2. The Dirichlet conditions on I' model
Ohmic contacts and the conditions of third kind on 992 \ I' covers interfaces between
the semiconductor device and insulators (with capacity b > 0) or homogenous Neumann
boundary conditions (b = 0).

About the Schrédinger operator we assume that the device confines the charged particles.
This results in boundary conditions of the form

w=0 onT, (v,m;'Vip)=0 ondQ\T.

We regard mixed boundary conditions to be able to model cuts through symmetric nanos-
tructures with homogenous Dirichlet conditions on the physical boundary.
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3 Analytical Considerations

In this section we analyse the previously defined Schrodinger-Poisson system from the
mathematical point of view. Of special interest will be those properties that will give us
solvability of the system. Therefor, requirements on the domain and the spaces are made
here as well as assumptions on the involved functions.

Concerning existence of solutions, we will follow the lines of the early works from Kaiser
and Rehberg [47, 49, 50] by using Schauder’s fixed point theorem, cf. Theorem 3.48. How-
ever, the presented result is a little more general in that only continuity of the distribution
function f is assumed, instead of differentiability. Thus, in particular the zero-temperature
case as described in [15] by Cornean, H., Neidhardt, Racec and Rehberg is included. Fur-
thermore, the analyticity of the particle density operator is treated, cf. H., Kaiser and
Rehberg [43]. Even though analyticity may not be essential for the existence result, there
are indications that this property might be gainful for establishing steadily converging it-
eration schemes. In fact it was used by Gajewski and Griepentrog in [27] for setting up
a descent method for the free energy of a multicomponent system that is comparable in
structure to the Kohn-Sham system.

Notation

In this work we are interested in a statistical ensembles of one-particle systems. These
systems will be examined in the real space representation on a bounded up to three dimen-
sional domain ©, i.e. Q C R? d € {1,2,3}. During these considerations different function
spaces over () are involved. In order to simplify notation we omit the indication for 2 in
the function space symbol, e.g. writing L? instead of L?*(€). Further, if necessary, the
distinction between real and complex space will be indicated as a subscript, e.g. L2 or L.
The space of linear continuous operators from one Banach space X into another Y will be
denoted by B(X;Y). If X =Y, we use the abbreviation B(X) := B(X; X). Because of
the numerous use of X = L? we once more abbreviate B := B(L?).

The ideal of compact operators within B we denote by B,, and the Schatten-class with
index r € [1,00] in By will be denoted by B,. Without further mentioning we identify a
function from L with the multiplication operator from L? to L? induced by this function.
In this sense L™ is embedded into B.

3.1 Domain and Spaces
About the spatial domain {2 we make the following general assumption.

Assumption 3.1. Q € R? d € {1,2,3}, is a bounded Lipschitz domain, cf. e.g. [70,
Ch. 1.1.9], [35, Defn. 1.2.1.2]. Let I" be an arbitrary closed subset of the boundary 9Q. T’
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and 00\ T fulfil the regularity property of Groger [36], i.e. are separated by a Lipschitzian
hypersurface of 0f).

Concerning the solution spaces for Poisson’s- and Schrodinger’s-problem we regard Sobolev
spaces with integrability index 2 and differentiability index 1, i.e. W[,%’Q and Wé’2. We
further introduce

Definition 3.2. Let Q and I fulfil Assumption 3.1. Let W' be the W¢ -closure of the
set

{¢lo = ¢ € C5°(Q), supp(y) N T = 0}
and WD%I% its real part. Further W¢ 1% denotes the space of continuous anti-linear forms on

1,2 ~1,2 . : 1,2
Wer and Wi 27 the space of continuous linear forms on Wg'r..

3.2 The Schrodinger Operator

First, we make the following assumption on the coefficient function of the Schrédinger
operator, i.e. on the effective mass tensor.

Assumption 3.3. Let m be a bounded Lebesgue measurable function on 2 with values
in the set of real, symmetric, positive definite d x d matrices, such that m="! is bounded as
well.

With this we define the Schrodinger operator by

Definition 3.4. Let m be given as in Assumption 3.3 . Define the Schrédinger operator
with zero potential Hj : Wé% — Wg}ﬁ by
1
(Hyv,w) = 5 /(m_l(:v)Vv(x), Vw(z))dz, v,we Wé% (3.1)
Q

Remark 3.5. Hy, seen as a mapping into L?, is the self-adjoint operator corresponding to
the quadratic form

ag[Y] = /mlw -V dz, (3.2)
Q
by the representation theorem for forms, [51].

The boundary conditions associated with the restriction of Hy to L? are homogeneous
Dirichlet conditions on the boundary part I' and homogeneous Neumann conditions on the
remaining part 0 \ T

Hy has a discrete spectrum that lies on the real axis. More precisely, the eigenvalues of
Hy lie between the corresponding eigenvalues of the operator —Vm~='V once with pure
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(homogeneous) Dirichlet and and once with pure (homogeneous) Neumann boundary con-
ditions, see [16, Ch. VI, Sec. 2+4].

In the following we consider Schrodinger operators Hy+ V', which we will denote shortly by
Hy. The applied potential V' will be taken from the real space L. This choice has mainly
two reasons. First, the application we have in mind includes modelling of heterostruc-
tures of semiconductor material in an effective mass approximation. Thus the potential V
includes the band-edge offsets, which are discontinuous, when regarding heterogeneities,
and so spaces of continuous functions only, are not adequate. Furthermore, adding the
potential V' means adding a multiplication operator working on dom(H,). To make sure
this operation is well defined, meaning the integral

/V(:B)U(x)w(x) dz, wv,we WC]‘% (3.3)
Q
to be finite, we chose V' to be from L2. Finally, the spectra of the operators Hy shall not

expand away from the real axis, i.e. V as a multiplication operator shall be symmetric in
dom(H,). Hence, we restrict our considerations to the real space L.

Remark 3.6. Note that in the one-dimensional case d = 1 taking V from L} would be
sufficient, see [49].

Concerning properties of Hy we first state a result that is fundamental for the subsequent
perturbation theory

Theorem 3.7. For every 0 E]%, 1], the operator (Ho+1)~% maps L? continuously into L.

The proof of this requires the following auxiliary results:
Proposition 3.8. [75, Cor. 4.10] Hy + 1 generates a contraction semigroup on L>®(Q).

Proposition 3.9. [75, Thm. 6.2] Let a be a densely defined, closed, symmetric and non-
negative sesquilinear form on L? and let A be the self-adjoint operator which corresponds

to a. Assume that the semigroup (e_tA)t>0 is contractive on L*°(Q). Suppose that for one

q €]2, 00| with dqQ;q2 < 1 the following Gagliardo-Nirenberg-type inequality

1-d1-2

[lle < cale, 1T ]l > (3.4)

is satisfied for a constant ¢ and every 1 € Dom(a). Then there is a constant co > 0 such
that

_ _d
e tAHB(L?;LOO) < cot 1. (3.5)

Proposition 3.10. If Q) is a Lipschitz domain and the form a is symmetric, coercive and
continuous, then (3.4) holds.
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Proof. Under our suppositions, a'/? may be estimated from above and below by the H'()
norm. Thus, (3.4) is equivalent to the classical Gagliardo-Nirenberg inequality on €. This
latter is implied by the following two statements:

i) For every Lipschitz domain there is an extension operator (see [31])
¢ c B(H'(Q); HY(RY) N B(L"(Q); L™ (RY)
for every r € [1, o0].

ii) The same Gagliardo-Nirenberg inequality is valid on whole R%.

m
It follows the proof of Theorem 3.7: using the representation formula
1 [o¢]
ol A
0
cf. [77, Ch. 2.6]. According to (3.5), we can estimate
1 [t o [ 114
-0 —t(Ho+1) 0
||(H0 + 2) ||B(L2;Loo) < m/ H (Ho HB(LQ;LOO) dt < F(Q) / ot dt (36)
0 0

Since by the spectral properties of Hy and functional calculus the operator [( Ho+1) ' (Hy+
2)]° : L* — L* is finite, the right-hand side is finite for § €]4, 1]. This finishes the proof.

Remark 3.11. Theorem 3.7 even holds true in case of nonsmooth domains, discontinuous
coefficient functions and mized boundary conditions. Thus, realistic geometries as well as
heterostructures are covered by it.

The upcoming results make sure, that the perturbed operator Hy inherits gainful properties
from Hy, e.g. self-adjointness and discreteness of the spectrum.

Lemma 3.12. For every V € L the corresponding multiplication operator from L? into
L? induced by V, is infinitesimally small with respect to Hy + 1.

Proof. Due to Theorem 3.7 we can estimate

IVl 2 < |V 2 || oo
= V||| (Ho + 1)75 (Ho 4+ 1)5¢| 1=
< ||V 2 l|(Ho + 1)39] 2
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for all » € D = dom(Hy). Since Hy+ 1, like Hy, is selfadjoint and positive, the right hand
side can be further estimated by
1 4
c [V ll0l 72l (Ho + 1)l 22

cf. [77, Ch. 2.6 Th. 6.10].
According to Young’s inequality, this is not larger than

1 4
et + Dol + (1) (VI [l

for any € > 0. O]

Corollary 3.13. For every potential V € L% the operator Hy + V inherits the essential
properties from the unperturbed operator Hy, namely

i) is self-adjoint
ii) has the same domain as Hy
ii1) has a compact resolvent and, hence, a discrete spectrum

iv) is semi-bounded from below and the corresponding lower form bounds may be taken
uniformely with respect to bounded sets in L%.

Proof. The statements follow from Lemma 3.12 by classical perturbation theory, see [51]
Ch. IV Thm. 1.143.17 and Ch. V Thm. 4.11. n

The next corollary provides the possibility of proving that the resolvent of a general
Schrodinger operator with potential V' from L2 has the same summability properties as
the resolvent of Hy, see [49] and [50]. This will be of use when investigating the particle
density operator.

Corollary 3.14. For every V € L2 and p ¢ spec(Hy + V') both operators (Hy + 1)(Hy +
V —p)~tand (Hy+V — p)~'(Hy + 1) are topological isomorphisms of L? onto itself.

Proof. Since H, is self-adjoint and positive —1 belongs to its resolvent set. Thus, (Hy +
V — p)(Hy + 1)7! is a bijection of L? onto itself. Continuity of this mapping can be seen
by

[(Ho+V = p)(Ho+ 1) s = 1+ V —p-1)(Ho+1) |5
< 1+ [[(V=p—1)(Ho+1) 5
< 1+ |V = p—Ulel|(Ho + 1)~ sz2, 100

thanks to Theorem 3.7. The assertion of this corollary for (Hy+ 1)(Ho+V — p)~! follows
now by an application of the open mapping principle, which yields that the inverse of
(Hy+V —p)(Hy+1)"t is a bounded linear map. For (Hy+V — p)~'(Hy+ 1) the assertion
follows from this by taking the adjoint. O]
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Finally, we will require summability properties of the resolvent of the occurring Schrédinger
operators. The central result for this is as follows:

Theorem 3.15. For the operator Hy from Definition 3.4 the resolvent is in a Schatten-
class. More precisely:

d
(Hy+1)"' € B, forevery 7> 3"

Proof. For a Schrodinger operator Hy with homogeneous Dirichlet boundary conditions
the assertion has been proved by BIRMAN and SOLOMYAK even for arbitrary domains 2,
cf. [2], [3]. The case of Neumann boundary conditions has been dealt with in [2, 3, 4] as
well, provided that the underlying domain Q is an W12 extension domain, i.e. if there is a
linear, continuous extension operator from W12(Q) to WH?(R?). In fact, the result holds
true for Lipschitz domains too, cf. [33] and [70, Ch. 1.1.16]. Having the Dirichlet and
Neumann case at hand, the result can be carried over to the mixed boundary conditions
case by the classical comparison principle, cf. [16, Ch. VI, Sec. 2]. O]

Corollary 3.16. For every V € L? the operator V(Hy + 1)~ : L* — L? is not only
bounded, but compact and belongs to the Schatten class B;. More precisely, one can estimate

IV (Ho+ 1)l < [IV(Ho+ 1) 5,
< Vlleall(Ho + )7 P lgrane) | (Ho + 1)7 |5, < 00 (3.7)

Proof. ||(Ho+1)7"13||gz2, 1) is finite since 10/13 > 3/4 > d/4, cf. Theorem 3.7. Further,
according to Theorem 3.15, (Hy+1)~! belongs to the Schatten class B, for every r > 3/2 >
d/2, in particular (Hy+1)"' € By 13. Hence, (Hy+1)7%/'3 is in the Schatten class B;. [

3.3 The Quantum Mechanical Particle Density Operator

In this section the particle density operator will be defined and analysed. Of special interest
will be continuity and monotonicity properties, which we need for showing the existence
of solutions to the Kohn-Sham system, see Section 3.5.

In order to define the quantum mechanical particle density operator, we need to specify the
occurring thermodynamic distribution function f, representing the underlying statistics of
the ensemble of (identical) quantum particles, cf. e. g. [82, Ch. 1.12] or [44, Ch. 6.3]. For
an ensemble in a three dimensional bulk material the precise appearance depends on the
number d of band discontinuities, cf. Section 2. First we will state assumptions on the
decaying properties of f. These are necessary to ensure the summability properties of the
occurring operators of the form f(Hy).
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Assumption 3.17. The statistical distribution function f is a positive, real-valued, con-
tinuous function that is strictly monotonously decreasing and in addition obeys for p € R

sup | f(s)(s + p)*| < oo,
s€[0,00[

3.3.1 Definition

For a given potential V' € L and a distribution function f the quantum mechanical particle
density is given by the expression

=D (V) (V)(2)|* (3.8)

=1

where {\(V)} and {¢,(V)} are the eigenvalues (counting multiplicity) and L?-normalised
eigenfunctions, respectively, of the Schrodinger operator Hy. The numbers N (V) :=
f(V) — Er(V)) are called occupation numbers. The real number Ex(V) is called the

Fermi-level. It is defined by the conservation law

o0

[N @)ds =3 FuV) - ExV) = N (39
o =1
N being the fixed total number of carriers in the device domain.

Remark 3.18. The strict monotonicity of the distribution function f together with the
asymptotics of the eigenvalues of Hy, yield that the Fermi-level Ep(V') is uniquely deter-
mined. Moreover f(Hy —Er(V)) is a nuclear operator, see [47, 49, 50, 72, 73], and hence
the duality between N (V') and test functions from L™ is expressed by

/ NOW dz = tr (W f(Hy — Ep(V)) . (3.10)

The expression for the particle density as defined in (3.8) includes the real shift Eg(V),
which, subject to the potential V', is fixed. Thus, the eigenvalues of the corresponding
operator Hy_g, vy are those of Hy, though shifted by €p(V). Let us therefore introduce

the (unshifted) pseudo-particle operator N : L2 — Li by putting

=) [l
=1

It is sufficient to analyse properties of N , provided V' — Ep(V) is bounded on bounded
sets and continuous. Indeed, this is the case, as shown by Lemma 3.24, cf. [47], [49], [50].
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Electrons and Holes

In what follows we want to model the spatial distribution of electrons (indicated by a
subscript n) and holes (subscript p) in semiconductor heterostructures. In order to calcu-
late the density for each species, the eigenvalues and eigenfunctions of the corresponding
Schrodinger operators, H,, v := H, o+ V,, and H,y := H,o + V,, have to be computed.

In addition to the difference in the effective masses, m,, and m,, the operators differ as
well in the way the effective potentials V,, and V,, are built. In case of electrons and holes
the effective potentials split up as follows:

Ve =—eeVeo+ Viee +ecp.

The factor e¢ is a sign, 1 for holes and —1 for electrons. The constant external potential
Veo is the band-edge offset of the species £&. The term V,.¢ is the exchange correlation
potential for the species €. Note that this term might depend not only on species £, but
on all occurring species, i.e. the exchange-correlation expressions for electrons and holes
might each depend on both the electron density and the hole density. Finally, ¢ describes
the electrostatic potential in the device domain.

The reason for introducing the signs e, is the difference in sign of the charges of electrons
and holes and the comparison to the nuclei-charges. This results in the fact that concern-
ing the band-edge potential, the electrons will, visually speaking, fall from ’above’ into
potential valleys, whereas the holes will rise from ’below’ into potential hills. Thus the
electron eigenvalues are ’above’ the band-edges and the hole eigenvalues 'below’. Since the
construction of the Schrodinger operators Hy is such that eigenvalues tend to infinity, we
need to rotate the hole band-edges to get the correct eigenvalues and eigenfunctions. This
explaines the sign in front of V.

The sign in front of the electrostatic potential ¢ has a similar reason. The potential ¢ repre-
sents a field produced by the different species. Since electrons will be attracted by positive
charges, these have to be valleys in the landscape of the effective potential. Contrary, the
electrons will be rejected by negative charges, resulting in potential hills. Therefore, ¢ has
to be equipped with a negative sign for the electron effective potential. Similar arguments
for holes result in a positive sign for ¢ in V.
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3.3.2 Continuity Properties and Monotonicity

Let us now recall some properties of N (and N, respectively), that are fundamental for
the analysis of the Kohn-Sham system. There are three main properties we focus on: con-
tinuity, monotonicity and analyticity.

Continuity

First we want to expand the representation (3.10) to test functions from L?. This will be
achieved by the next theorem.

Theorem 3.19.
i) N takes its values in the space LY and is a bounded mapping from L3 into L.

ii) Assume the domain of Hy embeds into a Hélder space C*. Then N takes its values
in this space and is a bounded mapping from L% into C*.

Proof. Let M be a bounded set in L?. Further, let 7 € R be such, that (Hy — 7)™ exists
for all Ve M (see Corollary 3.13 iv) ).

Theorem 3.7 together with Corollary 3.13 and Corollary 3.14 show, that the domain of any
Schrodinger operator Hy (V€ L) continously embeds into L. Thus, we can estimate

sup IN(V)llze < Z FO > < Zf M)l -

Using Theorem 3.7 and Corollary 3.14 we get

[0l 2o < ell(Ho + 1)l < cl|(Ho 4+ 1) (Hy — 7) Il (Hy = 7)u]| 2 -

The term ||(Ho + 1)(Hy — 7) 7|5 is finite, thanks to Corollary 3.14, and can be estimated
by supy e ||[(Ho + 1) (Hy — 7)7Y|5, see [50, Prop. 5.3] for details.
With

I(Hy = 7)¢ull2 = [|(A = 7)tullz2 = | A = 7]

we finally estimate

VSH%H/\Nf( Mz < sup I(Ho + 1)(Hy — ) 1||stf M)A = 7)?
S

=1

where the sum is finite, due to the decaying properties of the distribution function f, cf.
Assumption 3.17. This proves i).
The proof of ii) follows the same lines after estimating

Illee < ell(Ho + 1) lszz.coll(Ho + 1)l 2
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Remark 3.20. Note, that dom(Hy) always embeds into a Hélder space if QU is regular
in the sense of Gréger, [38].

With this (3.10) extends to W € L?
Corollary 3.21. For every V € L%, (3.10) leads to

/ WN(V)dz = tr (W f(Hy+ V)
Q

for all W € L?.

Proof. For V € L? it follows from Theorem 3.19 that N'(V) is in L>. Thus for V € L? the
left hand side is a bounded linear functional on L?.
To see that the same is true for the right hand side, we expand

tr (W f(Ho+V)) = tr (W(HV — 7)Y Hy — 1) 3(Hy —7)*f(Hy + V))

The term (Hy —7)3 f(Ho+ V') is bounded, due to the asymptotics of f (Assumption 3.17).
Corollary 3.14 together with Theorem 3.15 and Theorem 3.7 yield |[(Hy — 7)72||5, < oo
and ||W(Hy — 7)7'|s < oo, respectively. Thus, the statement holds true by extending
from L> to L2 [l

With this at hand Lipschitz continuity of N can be shown.

Theorem 3.22 (cf. [49, 50]). N, regarded as a mapping from L% into itself, is boundedly
Lipschitz continuous.

Remark 3.23. Note that this implies not only continuity but boundedness for the operator
N as well.

To carry the foregoing results over to N the following lemma is needed.

Lemma 3.24. The function Ep, assigning its Fermi-level Ep(V') to its potential V € L3,
s bounded on bounded sets and continuous.

Remark 3.25. Details and further properties of E(V) can be found in [47, 49, 50].
This yields
Corollary 3.26. The operator N : L3 — L2 is continuous and bounded.

For a proof of these results see [50].
Monotonicity

The following theorems about monotonicity of the particle density operator play an essen-
tial role in the existence proof.
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Theorem 3.27 (cf. [47, 49, 50]). The mapping ~N L2 — L2 is monotone.
Corollary 3.28 (cf. [47, 49, 50]).

i) The operator —N is also monotone, if regarded as a mapping WD%I% — WD%I%
i) The operator —N : W[élg — WD{}’Q is monotone as well.

For the proof, one first shows that, for any V., W € L, the positivity relation
tr((f(Ho+ V) — f(Hy+W))(W =V)) >0, (3.11)

holds true, see [45]. Afterwards one extends this by continuity to all V,W € L2 c.f. Corol-
lary 3.21.

Remark 3.29. Inequality (3.11) is a consequence of the formula

o0

tr([f(Ho+ U) = f(Hy+ V(U = V) = > (FO) = (1)) O = )| (8, &)

k=1

where the sets {\, Yr} and {;, &} denote the eigenvalues and corresponding eigenfunctions
of the operators Hy + U and Hy + V', respectively. Together with the decay properties of
the distribution function f, this yields the anti-monotonicity of the pseudo particle density
operator N'. The assertion follows for N as well, see [45] for details.

Analyticity

Lastly, it is possible to show another regularity property of N (N, respectively). There are
indications that analyticity of the particle density operator N , which is equivalent to the
analyticity of the operator mapping V' +— f(Hy ), may be a gainful property for establish-
ing steadily converging iteration schemes for the Kohn-Sham system (cf. [27]). GAJEWSKI
and GRIEPENTROG used analyticity to proof a generalised Lojasiewicz—Simon inequality
(cf. [13], [23], [27]), which was then taken to setup a descent method for the free energy of
a multicomponent system, cf. [27], similar in structure to the Kohn-Sham system.
Furthermore, analyticity plays an important role in bifurcation analysis, cf. [95]. In fact
there are indications, in analysis (eg. [79]) as well as numerics (eg. [69]), that the Kohn-
Sham system may have multiple solutions. However, under special conditions the solution
is unique, cf. [49], [50], [78].

First note, that the distribution functions we mainly have in mind are given by Fermi-
integrals. As such, they have singularities in the closed left half plane. Thus, we cannot
ask f to be holomorphic on the whole complex plane. Instead, we make the following
assumptions, cf. [50] and [43], by expanding Assumption 3.17 in the following way.
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Assumption 3.30. Denote for every @ > 0 by T, the contour
{A: A=s=+ias, s >0}

with positive orientation. P, then stands for the set of points in C that are enclosed by
T,, i e
P, = {)\1 + iy 1 A > 07|)\2| < Oé)\l}.

Assume, that for every ¢ € R there is an « > 0 such that f is defined and holomorphic on
P. —t. Moreover, there is an a > 0 such that

sup [fF(M)N| < o0,
AEP—t

Remark 3.31. From Assumption 3.30 follows in particular that for every t € R there is
an o > 0 such that

sup WSO <00 and [ TSI dIA] < o0,
AEPa—1 A

where Y is the contour corresponding to P, — t in the sense of Assumption 3.30. This
comes to bear in the proof of Lemma 3.37.

Let us now define, what we mean by ’analyticity’ of a mapping from one Banach space
into the other.

Definition 3.32. Following VAINBERG[95, Ch. 22], cf. also [12], [41, Ch. IIL.3], we call a
mapping F; : X =Y, j € N, between two Banach spaces a j-power mapping, if there is a
continuous mapping G; : X @...® X — Y which is linear in each of its j arguments, such
that Fj(r) = G;(x,...,r). A mapping F' : X — Y is called analytic in a point rp € X if
there is a ball B C X around zero and a sequence {F}};en of j-power mappings such that

F(ro+1) =F(ro) + »_ Fj(x) forally€ B,
j=1

and the series converges in Y uniformly for ¢ € B.

Analytic mappings possess many properties analogous to those of classical holomorphic
functions, cf. [95, Ch. 22| for details. The following theorem states the main result con-
cerning analyticity.

Theorem 3.33 (cf. [43]). Let us assume the distribution function f fulfils Assumption 3.17
and 3.30. Then the mapping L 2V — N (V) € L& (and N, respectively) is analytic in
every point V € L2.
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In what follows we will point out the main ideas for the proof of Theorem 3.33. Further
details can be found in [43].
A key to the proof is the next proposition, cf. e.g. [6].

Proposition 3.34. If F' is a mapping between the Banach spaces X and Y, then F is
analytic iff it is weakly analytic, i.e. for every y* € Y* the mapping X > v — (F(x),y*)
is an analytic mapping into the corresponding field C or R.

This means, having the relation

/ WN(V) de = tr(Wf(Hy + V), W e L? (3.12)

at hand (see Corollary 3.21) and considering the linearity and continuity of the trace, we
only need to prove that for every W € L2, the mapping

Lé 9V'->Wf(H0+V) EBl
is analytic.
We will thus proceed in the following way. Choose a number p € R, such that 1 is a lower
form bound for each of the operators Hy + V + p, provided V € L2 with |V 2 < 1 (cf.

Corollary 3.13). Define H := Hy + p and g := f(- — p) and write f(Hy+ V) = g(H + V)
in the usual way as a Dunford integral (see [20, Ch. VIL.9])

o(H+V) = —QLm/g(A)(HjLV—)\)ld)\. (3.13)

T denotes the contour corresponding to P, such that the function g is holomorphic on the
set P, — 1, cf. Assumption 3.30, and supyep, 1 [A?g(N)] < 0.

Remark 3.35. Note that then sup,cp, _; [N g(N)] < oo and by definition of p, T encloses
the spectrum of H +V for all V € L& with |V ||z2 < 1.

Next we expand (H +V — A)~! into a Neumann series

(H+V=)N"'=(H-\" i(—l)j(V(H — )Y (3.14)
and define the j-linear mapping 7}
Ti(V) = % /g()\)(H —N)HYV(H =N d). (3.15)

These mappings fulfil the following properties
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Lemma 3.36. 1. For every V € L%, the operator T;(V) is bounded and selfadjoint.
2. For every V,W € L&, one has WT;(V) € B; .

Finally, we have to show that for W € L2 and V from a sufficiently small ball in L} around
0 one has

WHH+V) =Y WI;(V), (3.16)

where the series on the right hand converges in B;. In particular this means that inter-
changing integration in the Dunford integral and summation in the Neumann series (3.14)
is possible.

In order to prove Lemma 3.36 and Theorem 3.33 we need some technical assertions.
Namely, a comparison principle that allows to replace the term (H — A\)~! by the A-
independent term H~! and a continuity assertion for the trace operator in (3.12).

Lemma 3.37. If A is a selfadjoint operator on a Hilbert space $) the spectrum of which is
contained in [1, 00|, then

1

A(A = \)1 <
Sup | A( ) ) < dist(

T (3.17)

for all Y =7, with a > 0, cf. Assumption 3.30.

The proof of this lemma runs by classical arguments from the theory of linear operators,
cf. e.g. [51, Ch. V.3.5], and the special choice of T, see [43] for details.

Lemma 3.38. If A is a selfadjoint operator on L? such that Lz > W — WA € By is
continuous. Then the linear form Ly 2 W s tr(W A) is continuous and takes real values.
Hence, it may be identified with an element from L%.

Proof. Continuity is clear by continuity of the trace on B;. Concerning the second assertion,
one has by splitting W € L into its positive and negative part, W =W, — W_,

tr(WA) = te(W2AW?) — tr(WP AW, (3.18)

Both addends on the r.h.s. are real, because the operators Wi/QA W}F/Q and W2 A W2
are selfadjoint. O

The proof of the second assertion in Lemma 3.36 in case of j < 7 requires only some
algebraic manipulations in the integrand. Exemplarily, we show the assertion for WTy (V).

Making use of the resolvent equation

(H-N"'=H' '+ \HY(H-)\"! (3.19)

33



we get

WTy(V) = 5 /g(A)(H —NW(H - N)TW(H - N)HdA
T
- ;—Z g (H — AL [VH‘1VH‘1
T

+AVH Y H-N"'"WH '+ A\WH'VH ' (H-)\)""!
+NVH Y H - N)"'WHY(H -\ dX.

Using the resolvent equation (3.19) again in those summands where (H — \)~! appears

exactly once as a factor, yields

-W

WT(V) = 5— [ 9()(H - N HNVH Y)W +AV(HP?VH ' + H'VH?)

T
+NVH?2H - N)'WVH + NVH'WH?(H -\

FNVH N H - N)TWHY(H - /\)*l] dX .
We discuss the summands separately. For the first term we get

2mW / YVH Y2 AN = Wg(H)(VH™)?

which belongs to B; and admits the estimate

Wy(H)(VH™ )5, < [[Wo(H)|ls, [VIZllH ™ B2y < cllVIIZ:
according to Theorem 3.7, Remark 3.18 and Corollary 3.14. If g denotes the function
A= Ag(\), then

-3 W/)\g YH —N)"'VH2VH " d\ = W§H)VH >VH™",
v

-3 W/)\g YH =N 'VH'WH?2d\=Wg(H)VH 'VH 2,
v
T

and one can estimate
IWg(H)VH*VH s, + |Wg(H)VH 'VH ||,

< 2AWIE) VL IH sz 1 H Iz,

< AW Ll IV 1~ ez |H 5, sw s g(s)| < o0
S€E spec
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In order to estimate the first of the terms with A? we note that the integral

/ NgOI(H = N VH2(H = N VH ) dI
T

< [ IgVIIHUT = N VH 2 (H =3 VH sd
< c sup [H(H = ) BIVIE: sl sy [ ¥ 9OVIdIA
T

is finite. Hence, one has

— 2—W Ng\)(H = N)'VH(H - \)"'WVHd)
e
T
1
=5 NgWW(H —N)"'VH2(H -\ "'VH 'd\ € B.
T
T

Actually, this integral is a nuclear operator and can be estimated as follows:

1
2—H /Azg(A)W(H N WH(H - N 'WVH A
T

B

< / N gOWH — N VH H2H(H — 2 'VE s, dA
< e sup [ CH = 0 RIW il VI o | / o] dIA.

This is finite, due to Lemma 3.37, Corollary 3.14, Theorem 3.15, and Assumption 3.30.
The terms

W/A2 )VYWVHTIWVHTA(H - At
omi

5 W/)\2 YVH Y H - N)"'WH Y (H -\ d)
e

can be treated analogously.

Remark 3.39. In the proof we used that [ |A[*|f(N)]d|\| is finite. Analogously, one uses
that the integral [ [X|["|f(N)|d|A| is finite to prove the assertion for WTr(V'). This is why
we asked for |\| to the power of 9 in the supremum condition of Assumption 3.30, see
Remark 3.531.
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The more crucial point is to obtain estimates for the summands with index larger than
7 which, additionally, shall allow the interchange of integration and summation. Assume
J > 7, then we can estimate:

IW(H =N (VH =) |ls, <
< W H s [V H G [VE s sup [ CH = 2) 7

Now, taking into account (3.7) and Lemma 3.37, we can further estimate

< AW LIV Il H 55 o .
t BUSES) (dist(1, 7))

Thus, choosing V' from the ball |V]|;2 < min(1, %

B(L#;L>®
absolute value of the corresponding terms in (3.15) behaves as the addends of a geometric
series, which at the end allows to interchange summation and integration, c.f. [91, Ch. IV.4

Thm. 45].

) one recognises that the

3.4 The Poisson Operator

In this section we introduce the Poisson operator governing the electrostatic potential ¢,
which is a constituent of the Kohn-Sham system. Let us start by fixing the boundary
conditions and formulating assumptions on the dielectric permittivity function.

Assumption 3.40. The function ¢, representing the dielectric permittivity on €2, takes
its values in the set of symmetric, positive definite d x d-matrices. We assume that ¢ is
Lebesgue measurable and bounded, such that e~! is bounded as well.

Concerning the electrostatic potential we regard the following boundary conditions
p=¢1 onl', —(eVop,v)—bp=—bpy on dIN\T,

where ¢, are the boundary values given on I and @5 those for the inhomogeneous boundary
conditions of third kind on 00 \ I'. v denotes the outer unit normal at the boundary 0f2.
The Dirichlet conditions on I' model Ohmic contacts and the part 9\ I' covers interfaces
between the semiconductor device and insulators (with capacity b > 0) or homogeneous
Neumann boundary conditions (b = 0).

About the boundary conditions we further assume:

Assumption 3.41. Let b > 0 be from L>*(02\ I') (with respect to the surface measure)
and let either the surface measure of I' be nonzero or b be strictly positive on a subset of
OQ\ T" with positive surface measure.
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In what follows we want to solve the inhomogeneous partial differential equation
-V eVe*=p—n+D (3.20)

equipped with the above described inhomogeneous boundary conditions. We fix a function
0y € H', which fulfils

wo=¢1 onI'. and ¢y =0 on OQ\T
Then, the solution ¢* to (3.20) splits up as
¥ =vot e,
with ¢ € H.
Definition 3.42. We define the linear Poisson operator —V - eV : Wp? — W[R_’%g by
(=V eV, ¢) := /gvsp.w dz + / b(r)p(T)p(T)dr, @€ Wg? ¢ €Wgi. (3.21)

Q AO\T

The definition is correct, because Wa? embeds continuously into L2(0\ I), cf. [28].

Remark 3.43. Note that choosing Wn%’z instead of Wn%% as the domain of the Poisson
operator defined above is necessary to have the possibility of allowing for inhomogeneous
Dirichlet boundary conditions as introduced by insertion of pq.

Some fundamental properties of the operator just introduced are the following:

Lemma 3.44.

i) =V - eV is continuous
ii) Assume pg € W[,%’Q, then the mapping
1,2 ~1,2

18 strongly monotone.

i) (—=V -eV)™! maps L} continuously into L3

Proof.
i) follows from the boundedness of € and b.
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ii) Due to the assumptions on ™! and b, we can estimate
((=V - eV(go+ 1) + V- eV(po + ¢2)), 01 — p2)
= /8v<901 —¢2) - V(p1 — p2) da + / b1 — 2)dr

Q OO\T
2

> o / V(o1 — ) - Vo — o) da + e / (01— pa)dr
Q Q\I'

> . / V(o1 — o) da.
Q

iii) As for the resolvent of the Schrédinger operator Hy + 1, one can show (—V . 6V)71 €

B(L%; Lg°). From this, the assertion follows by the selfadjointness of —V - eV on L% and
duality, since for ¢ € L& C L we have

I(=VeV) ¥l = S 1|<(—V€V)_11/1790>|
¥ Lé:
= W [, (=VeV) o) < 8l ll(=VeV) lsuz iz
¥ L%:

Corollary 3.45. Assume g € W[é’z, V., V, € L&. Then the operator
W[é:?‘ Sp -V €V(g00 + 90) +Nn(vn - 90) - J\/;?(‘/;? + (10) € VV[R_,Il‘72

is strongly monotone and its monotonicity constant is not smaller than that of —V -V :
W[éﬁ — W[R_’llﬂ. N, and N, denote the particle density operators corresponding to electrons
and holes, as described in Section 3.3.1.

Proof. The proof results easily from Lemma 3.44, Corollary 3.28 and the fact that the
Wit ¢ Wer” duality is the extended L? duality. O

3.5 The Kohn-Sham System

In this section we finally come to analyse the Kohn-Sham system. First we define what we
will call a solution.

Definition 3.46. We call (py + ¢,n,p) € Hf x L* x L? a solution of the Kohn-Sham
system, iff
—V-eVp = D+p—n
n = Nn(vn + ch,n(nap) - SD)
p = Np(Vp+ Vacp(n,p) +¢),
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where D = D+ V - eVy.

Remark 3.47.

i) As described previously, the function gy represents the inhomogeneous Dirichlet bound-
ary conditions for Poisson’s problem. Thus, the problem we need to solve for getting
Q1S

~V-eV(po+¢)=D+p—n

or
—V-eV(p)=D+p—n, with D=D+V -£V(g)

i) As described in Section 3.3.1 N, and N, are the electron and hole densities, respec-
tively.

iwi) We chose the requirement n,p € L2 in order to have the right-hand side of Poisson’s
equation in a space, which embeds into WD;%’Q, cf. Definition 3.42.

3.5.1 Existence of solutions and fixed point formulation

There will be two statements in this section. Firstly, we will present the main existence
theorem concerning solutions to the Kohn-Sham system. Secondly, a theorem will allow
for a fixed point formulation, which will be interesting from a numerical point of view.

Theorem 3.48 (Existence of solutions). Suppose that Q U T is regular in the sense of
Groger. Further assume that the operators Vien, Vaep : Ly X Ly — L& are bounded and
continuous.

Then under the general assumptions on €, me and b, made above, the Kohn-Sham system
has a solution for every D &€ WH;%’Q.

Proof. We will apply Schauder’s Fixed Point Theorem. As the required closed, convex set
we take

K:: {<n7p) : n7p€L[}1?7n7p207/nd«r—Nn,/de—Np}7
Q Q

where N,, and N, are the fixed numbers of electrons and holes, respectively, in the semi-
conductor device domain. The mapping ¥ will be defined as follows:

Vs (n,p) = Na(Va 4 Vaen(n, p) = @(1,0)), Np(Vy + Vaep(n,p) + @(n,p))) , - (3.22)

where

®(n,p) = (~V-eV) " (p—n+D). (3.23)

U takes its values in K by definition of N, and N,. Moreover, according to Lemma 3.44,
®: Ly x Ly — L? is continuous and bounded. Hence, ¥ is continuous by Corollary 3.26.
Finally, the image of K is precompact by Theorem 3.19 because the set of potentials
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occurring in the argument of A, and N, in (3.22) is L&-bounded. Thus, by Schauder’s
theorem, ¥ has a fixed point (n, p) which is from C* x C® — L% x L2, cf. Theorem 3.19.
Defining ¢ by the right-hand side of (3.23) one gets a solution (¢ + ¢, n,p) of the Kohn-
Sham system, cf. Definition 3.46 [

Remark 3.49. According to Theorem 3.19 we already know that the electron and hole
densities of a solution are a priori Holder continuous. Then, in dependence on the reqularity
of the doping profile D and on the inhomogeneity @q, the electrostatic potential p often has
better properties than only WD%’Q due to elliptic reqularity, see e.qg. [38].

With the upcoming numerics in mind we now present another formulation of the fixed point
mapping. An important part of this construction will be the nonlinear Poisson equation

Py(p) =~V - eV + Ny (Vi —9) =Ny (Vy +9) =D, B =(V,,,V;), (3.24)

to which the system reduces when the exchange-correlation potential is omitted. Due to
Corollary 3.45, this operator is strongly monotone.

Basic for this approach is the fundamental result about monotone operator equations, cf.
28].

Proposition 3.50. Let T' be a strongly monotone and boundedly Lipschitz continuous
operator between the Hilbert space $ and its dual $*. Then the equation

Tu=f (3.25)

admits for any f € $H* exactly one solution. Let J : $ — $H* be the duality mapping, mr
the monotonicity constant of T and My be the local Lipschitz constant of T' belonging to a
centred ball K wn $ with radius not smaller than

2
—||T(0) — f|| g+ 2
1T (0) = £l (3.26)
Then the operator
0 u— T N (Tu —f) (3.27)
Mz

maps the ball K strictly contractive into itself and its contractivity constant does not exceed
_ T (3.28)

The fized point of (3.27) is identical with the solution of (3.25).
Having this at hand, we can define the operator
L:Lgx L — Wyt

assigning the solution ¢ of

Pyp =D
to the given potentials U = (V,,,V,).
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Theorem 3.51. Let V,, and V), be from L%. Further, let o := L(V,,,V},) be the solution to
(3.24). Then L: L x L — Wyt is continuous.

Proof. Let ¢ be from WD%I% and m,4 be the monotonicity constant of the operator Py,
compare Corollary 3.45. By definition of the dual-norm and of strong monotonicity we
have

(P — Pu(0),v)

[Pup — Pu(0)|lg2 = sup
. YeH] ||¢||H1£
P — P(0),
= ||,PQ]S0_,P‘17(0)||H1:1 Z < pif'2 Q?( ) @)

!l
& [[Pup = Po(O)ll g llelluy = (Pup — Pu(0), ¢)

and

(Poy — Pu(0),¢) = malell?
1 (Pyp — Pxu(0),¢)

— > [l
ma 1]l i
Thus, we get the estimate
1 1, =
leliy < —IPoe = Po(O)lluzr = 1D = Na(Va) + No(Vo)ll 7 (3.29)

In particular, this gives an a priori estimate uniform for V,,,V,, from bounded sets in L§,
see Theorem 3.19.

Assume now that the assertion is false. Then there is an € > 0 and a sequence {Uj}, in
L% x L} converging in this space to U = (V,,,V,), such that |j¢) — llwaz = 1£(T) —
£<m)HW§’§ > ¢, ¢ and ¢y being the corresponding solutions of (3.24). Since the sequence
{¢k}r is bounded in W[éﬁ, due to (3.29), there is a subsequence {y;}; which converges

strongly in L2 to an element ¢ € L. Thanks to the continuity properties of the operators
N, N, (c.f. Theorem 3.22), this gives

Nn(Vn,l + 1) — A/;D(V;J,l —o) +E— Nn(Vn + @) — -N;D(V;? -Q)+E
in W[Rjég for | — oo. Hence,
{oh ={(=V-eV) " WNa(Voa + @) = Ny (Vo — 1) + E)}i

converges in Wu%% to an element ¢. But ¢ must coincide with ¢ by the injectivity of

the embedding Wu%i s L?. Thus, ¢ then also satisfies (3.24). Since the solution of
(3.24) is unique, due to Proposition 3.50, this means ¢ = ¢, what is a contradiction to

lor = @l > e O
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Let us now define the second variant of a fixed point mapping

\Ij(nvp) = <Nn(Vn + ch,n(n7p) - ‘C(Vn + ‘/;c,n(nap)v V;J + ‘/:I:c,p(nap)))7 (3 30)
Ny(Vi + Ve (,9) + £V + Van(, ), Vy + Ve (0. ))) ).

Continuity and compactness follow from the previous considerations, ¢f. Theorem 3.51 and
Theorem 3.19. Thus, ¥ has a fixed point giving a solution of the Kohn-Sham system.

So in view of the numerical considerations we have two possible fixed point mappings at
hand. The first, (3.22), is quite natural in that it produces self-consistency of the solution
to the Kohn-Sham system directly. The second (3.30) replaces the (simple) solution ¢ of
Poisson’s equation by the electrostatic potential of the self-consistent solution to the Kohn-
Sham system without exchange-correlation potential. In this way, exchange-correlation
effects are included in the electrostatic potential. That means, V.. and ¢ belong to each
other, which is not the case for (3.22). This might be important for the iterative procedure.

42



4 Cylindrical Quantum Dot

In the following sections we will deal with the numerical investigation of the presented
Kohn-Sham system. This chapter introduces the main example to which the numerical
results correspond to. Namely, this will be the exciton localisation in a cylindrical quantum
dot (QD) embedded in a quantum well (QW). After schematically describing the device
setup the chapter deals with the spectral properties of the resulting Hamiltonian. For
a better understanding of the spectral properties of the quantum dot example, we will
introduce a reference configuration on a square-box domain describing the quantum-well
region only, i.e. the quantum box with infinite barriers. This reference system qualitatively
shows the same behaviour.

4.1 Device Configuration

As a main example we use a cylindrical quantum dot within a quantum well. In Figure 1 a
schematically illustration of the treated structure is shown. It is made of a thin quantum
well layer sandwiched between thick bulk layers. Embedded in the quantum well layer is a
cylindrical quantum box, representing the quantum dot. We are especially interested in the
localisation of excitons inside the dot. On the basis of Kaiser et al. [69] this configuration
models a region of phase-segragated Indium within a (Ings, Gags)N/GaN quantum well.
The 2D calculations performed in [69] observed stable (bi-)exciton in physically relevant
ranges of parameters, i.e. quantum box radius between 0.5 nm and 3 nm and a potential
depth up to 1 eV.

For our calculations we choose a width of
the quantum well of 2 nm and a radius of
the quantum box of 2 nm, as well. The
band-edge offsets at the hetero-interface
(In,Ga)N/GaN are AE. = 0.15 ¢V and
AE, = 0.23 eV (cf. [74, 94, 69]) for the
conduction and valence band, respectively,
see Figure 2. The potential depth of the
quantum box is set to 0.2 eV.

iy
L)

/ ( \

I - ,
Since (Ings2,Gagg)N is a mixture on the /,'('"'i””\": ,4%/
basis of 20% InN and 80% GaN, the re- N ‘ I{
asis o nN an alN, the re ' \'I-’ }’/

N
b of 20 1 . the %
maining material parameters (dielectricity,

A
effective masses) are assumed to be con- 'iiiiilll/

stantly those of GaN throughout the whole
Figure 1: schematical quantum dot structure:

domain. They are
cylindrical quantum box embedded in a quan-
tum well.

=95, m.=02my, my=08myg,
where mg denotes the electron mass. The boundary conditions will be mixed Dirichlet
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Figure 2: Variation of the band-edge offsets for the quantum dot on cross-section. Left:
conduction band offset; right: valence band offset.

and Neumann conditions. Homogeneous Dirichlet on top and bottom and homogeneous
Neumann on the sides.

4.2 Quantum Box with Infinite Barrier: a reference system

To understand the spectral properties of the
QD Hamiltonian, we will analyse a refer-
ence system for which the analytic solutions
are known explicitly. The considered prob-
lem reads

Hy = By

with H = —52-V? + V. Where the poten-

tial V is ﬁxe?in.1

The regarded domain will be a flat square
box as shown in Figure 3, which shall rep-
resent the quantum well region of the origi-
nal device with infinite barriers at the bulk
interfaces. Thus, according to the original device the boundary conditions are mixed ho-
mogeneous Dirichlet on top and bottom and homogeneous Neumann on the lateral sides.
The size of the square box is determined by the side lengths L,, L, and L., where the base

area shall be a square, i.e. L, = L, =: Ly, with Lj > L,. For our reference calculations

Ly

we have chosen a ratio . =2.5.
z

Figure 3: Reference structure: square box,
modelling the quantum well region
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4.2.1 Quantum Well States

First we will have a look on the quantum well states, i.e. V = const.

The problem now reads

1 [0 P .
<8x2+8y2+@>¢:(E—V)¢:E¢.

C2m*
By separation of variables the wavefunction ¢ can be written as a product

¢n,m,l<x7 Y, Z) = wn(£)¢m(y)¢z(2) )

where the factors are solutions to the ordinary differential equations

1 62 / /
_2m* @1/)” = Enwnu Qa: = [O, Lz] ; ¢n(0) - ¢n(Lg;) =0 (Neumann)
1 02 ) /
T omr 3_y2¢m = Eum, Q,=[0,L,], ,,00)=1,,(L,) =0 (Neumann)
1 02 .
_Q_m*@iﬂl = By, Q.=10,L.], (0)=1(L.)=0 (Dirichlet).

The eigenvalues and eigenfunctions are thus given by

1 nr\ 2 1 mm\ > 1 I\ 2
E, = ") Ea-= ") E= wl
2m* (Lx> 2m* (Ly> ' ome (Lz)

o) =cos (7 ) vl =cos (77 0) o) =sin (5 <)

Y

and

for integer values n > 0, m > 0 and [ > 1, which are the quantum numbers. Every state
will be represented by these quantum numbers in the form (n,m,[). We thus get

l
Ynmi(T,y, 2) = cos (Z—W x) cos <? y) sin (L—7T z) (4.1)
T y z

and the energy is then given by

. 1 nr\ 2 mm\ > I\ 2 2 n? + m? I?
E =FE,+E,+FE = — — — = — | .
(4.2)

Due to the square base area we expect a degeneration for states (n;, m;,(;) and (n;, m;, ;)
with n7 +m; = n? + m?. The energies

2 2
—— = AF d
2m* Lﬁ Ian 2m* L2

=AFE,
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are called quantisation energies. They primarily determine the energy shifts between the
states, due to the size quantisation.

Figure 4 shows a comparison of the first 50 eigenvalues computed by use of the explicit
formula (4.2) and by solution of the corresponding 3D eigenvalue problem. As a solution
method we used the Finite-Volume based solver introduced in [59], cf. Section 5.1. We
clearly can see the predicted multiplicity of states. Since the first eigenvalue equals the
quantisation energy AF,, we can calculate the (energetic) position of the state (0,0,2),
i.e. 4AFE,, which is indicated by the horizontal line in Figure 4. Below this level all states
belong to the quantum number [ = 1. States with [ > 1 can only occur above this line.

quantum well (V=0)
0. 1 2 T T T T

— calculation

0.1L | —analytic |

0.08
ANE,_

wit 0.06

0 5 10 15 20 25 30 35 40 45 50
#EV

Figure 4: Quantum well eigenvalue spectrum: Calculation by use of (4.2) and numerically
solution of the eigenvalue problem, cf. Section 5.1.

The included quantum numbers correspond to those eigenstates shown in Figure 5, where
the probability densities of the corresponding first nine eigenfunctions are shown, i.e. |1)]?.
Below the pictures the corresponding quantum numbers are written. Note that the un-
expected shapes of the states {(2,0,1),(0,2,1)} and {(2,1,1),(1,2,1)} are due to the
multiplicity of the states. In this situation, the solver for the Schrodinger problem calcu-
lates a basis of the degenerated subspace. However, this basis need not be the canonical
one represented by ¥, 4, ¢f. (4.1). In our case the found basis {12270,1, 22072,1} arises from

{W92.01,%021} by rotation, i.e.

~( cos(a) —sin(a)

- < sinfa)  cos(a) )
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and -
( 1@2,0,1 ) _R ( 20,1 ) 7
Yo,2,1 o2,
with a = 45°. The same applies for the eigenfunctions @/;2,1,1 and 12172,1.

y[1.0e+ yI1.0e+ y1.0e+

(0,1,1)
04 02 +0 +02 104
04 02 +0 w02 +04 04 02 +0 02 104
y[1.0e+
y[1.0e+ y1.0e+ a0
-40 7 —L 1
M| | | -1,
4 20
+ %
+0
& X[1.040;
01024 1.0 o
(1,1,1) (0,2,1)
0.4 0.2 +0 +0.2 +0.4 0.4 0.2 +0 +0.2 +0.4
y[1.0e+ y[1.0e+ y[1.0e+

(2,1,1) (1,2,1) (2,2,1)

Figure 5: Quantum well states: probability density of eigenfunctions 1 to 9, cf. Figure 4.
Corresponding quantum numbers given as triplet (n, m, ).
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4.2.2 Harmonic Potential Valley

The second configuration for which we know the solu-
tions explicitly is the two dimensional harmonic oscillator
(HO), i.e. 04 02 40 +02  +04

y[1.0e+02]

1
Viw,y,2) = gmiwt(a + 7). (43)

inside the quantum well. Figure 6 shows the potential
(4.3) applied to the square box problem. It is constant
along the z-direction and parabolic in the (z,y)-plane.

The wavefunction again separates into

wn,m,l(xa Y, Z) = wn,m(xv Z/Wl(@ :

The z-component of the eigenstate is still given by

1 I\ > A Figure 6: Harmonic potential
By = om* \L.) i(z) = sin L. “ - in z-y-plane for reference square
. . box system.
For the (x,y)-component we get the eigenvalue contribution
Evm=wn+m+1), (4.4)

and the corresponding eigenfunction is given by, cf. [14, Ch. 5],

1
* 2 1 1o«
i/fn,m(l’,y) = (m w) —am w(x2+y2)Hn( \% m*wl’)Hm( \% m*wy) )

e
T 2ntmp |

where H;(s) denotes the i-th Hermite polynomial,
52 di'6_82

ds
The real value w is called the angular or orbital frequency and together with the quanti-
sation energy in z-direction it determines the lowest eigenvalue of the corresponding 2D
operator, i.e. n = m = 0. It is chosen, such that the eigenvalue range is comparable to

that of the quantum well with constant potential V. The numerical value for the presented
calculation is w = 0.02485

Figure 7 and Figure 8 show the eigenvalues and the corresponding probability densities of
the eigenfunctions, respectively, from the 2D harmonic potential valley in the square box.
Again we expect multiplicities due to the symmetric dependence of E,, ,,, on the quantum
numbers n and m. Degenerated states occur for all states sharing the same summation
result n + m = const. The horizontal lines in Figure 7 indicate the first and second
quantisation in z-direction. Regarding Figure 8 we have the same effect as already seen in
Figure 5. The states {(1,0,1),(0,1,1)} and {(2,0,1),(1,1,1),(0,2,1)} form bases of the
corresponding degenerated subspaces. Note that the shown eigenvalues 8 and 9 are only
one half of the basis set needed to span the subspace for n +m = 3.

Hi(s) = (=1)'e

48



harmonic potential
0.25 : : ‘ ‘ ‘
—calculation

—— analytic

0 5 10 15 20 25 30 35 40 45 50
#EV

Figure 7: quantum well with harmonic potential (w = 0.02485): Eigenvalue spectrum
calculated using (4.4) and numerically solution of the eigenvalue problem, cf. Section 5.1.

yI1.0e+02] ¥I1.0e+02] y11.0e+02
[ L L L L [ L L L L S L L L L
Y Y +Y
1 .ttét\% 1 1 .ttét\% 1 - x[1.de n~]
+2 +2

®

yI1.0e+02] yI1.0e+02] 1108402

yI1.0e+02] yI1.0e+02] YI1.0e+02

(0,0,2) (n+m=3,1) (n+m=3,1)

Figure 8: States in quantum well with harmonic potential: probability density of eigen-
functions 1 to 9, cf. Figure 7. Corresponding quantum numbers given as triplet (n,m,1).
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4.2.3 Harmonic Potential Cutoff

Using the foregoing results we can introduce a simple quantum dot model, cf. [67], con-
sisting of a harmonic potential that is cut at a certain value and continued constantly,
see Figure 9. There the potentials V for electrons and holes are shown. The depth of
the harmonic valleys as well as the orbital frequency w(= 0.02485) are the same for both,
electrons and holes. The different radii of the dots result from the different particle masses
mp, = 4m,.

HO cutoff potential (electron) HO cutoff potential (hole)

0.15

yi1.0e+02] 0.1

u® 0.05

Figure 9: Cutoff of harmonic potential in quantum well. Left: potential for electron
calculation (3D view and cross-section); right: potential for hole calculation (3D view and
cross-section).

electron hole
—— calculation
0.15¢ 0.15¢ ) .
—— analytic (harmonic)
—analytic (well)
0.1 0.1
I I
L w
0.05¢ 0.05+
N ~
ol AEZ(weII) | cutoff o}
0 10 20 30 40 50 0 10 20 30 40 50
#EV #EV

Figure 10: Eigenvalue spectrum for electrons (left) and holes (right) for quantum well with
harmonic cutoff potential. Comparison of numerically calculated eigenvalues to shifted
eigenvalue spectra of pure quantum well and quantum well with harmonic potential.

The eigenvalue evolutions of this configuration will be a mixture of the (properly shifted)
quantum well states and the HO-states for the different particles. Thus, below the cutoff
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we will find pure HO-eigenstates and above a mixture with the quantum-well states will
occur. Hence, it is sometimes not possible to identify a state with the corresponding
quantum numbers (n,m, ) of a QW or HO state. In Figure 11 and Figure 12 we therefore
omit the quantum numbers.

g ""’2,] : s dévg

o 5{.;%]

Figure 11: Probability density for electron eigenfunctions 1 to 8 in quantum well with
harmonic cutoff potential.

weld) weld) e ol
. ) . o N :
< = - #
1 2 3 4
40 ’ N 1.0e+02] 40 A ] . N N vI1.0e+02] & A ]
. r 3 . .,3 g A e |
[+ e S :
5 6 7 8

Figure 12: Probability density for hole eigenfunctions 1 to 8 in quantum well with
harmonic cutoff potential.

In Figure 10 the eigenvalue spectrum for electrons and holes are shown. In both cases, we
see that the spectrum starts with HO-states and continues with QW-states above the cutoff
energy. Or more precisely, above the quantum well z-quantisation energy AFE,. However,
the states above the cutoff are not pure QW-states but rather mixed HO-QW-states. This
can be clearly observed in Figure 11 and Figure 12. For electrons, eigenstate four allready
is a mixed state of quantum dot and well states; for holes the mixture of states starts
with eigenstate eight. Even though energetically located in the quantum well, the found
states do respect the potential valley at the dot, in that there is an accumulation in the
dot region.
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4.2.4 Multi-Particle States

Since we are mainly interested in exciton calculations, we will show results on the locali-
sation of up to three excitons in the reference square-box system.

Figure 13: Exciton calculations for the quantum well reference system with harmonic
cutoff potential; a) exciton (X), b) bi-exciton (XX), ¢) tri-exciton (XXX). From left to
right: solution (electron), eff. potential (electron), solution (hole), eff. potential (hole),
electrostatic potential.

#EV 1 2 3 4 b} 6 7 8
ref. | 0.0015 0.0250 | 0.0250 | 0.0394 | 0.0420 | 0.0436 | 0.0452 | 0.0452
X 1-0.0026 | 0.0228 | 0.0228 | 0.0383 | 0.0414 | 0.0426 | 0.0447 | 0.0447
XX 1-0.0043 | 0.0222 | 0.0222 | 0.0380 | 0.0413 | 0.0425 | 0.0446 | 0.0446

XXX | -0.0057 | 0.0217 | 0.0217 | 0.0375 | 0.0411 | 0.0423 | 0.0443 | 0.0443

#EV 1 2 3 4 ) 6 7 8
ref. | -0.0116 0.0011 | 0.0121 | 0.0121 | 0.0218 | 0.0246 | 0.0246 | 0.0263
X |-0.0141 | -0.0013 | 0.0099 | 0.0099 | 0.0195 | 0.0226 | 0.0226 | 0.0259
XX 1-0.0133 | -0.0008 | 0.0100 | 0.0100 | 0.0200 | 0.0226 | 0.0226 | 0.0257

XXX | -0.0117 | 0.0007 | 0.0107 | 0.0107 | 0.0213 | 0.0233 | 0.0233 | 0.0255

Table 1: Eigenvalues of exciton calculations for the quantum well reference system with
harmonic cutoff potential. Electron (above) and hole (below) eigenvalues for exciton, bi-
exciton and tri-exciton calculations. Occupied states are indicated in bold font.

In Figure 13 the resulting solutions for exciton, bi-exciton and tri-exciton calculations are
shown together with the effective and electrostatic potentials. In Table 1 and Figure 14
we see the corresponding first 8 eigenvalues of the solutions compared to those of the pure
reference system. For every exciton we indicated the eigenstates that play a role when
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Figure 14: Comparison of exciton eigenvalue evolution for harmonic cutoff potential. Eigen-
values for exciton (red), bi-exciton (blue) and tri-exciton (green). Corresponding dashed
areas mark occupied states.

composing the densities n. and ny, by writing them in bold font. For the single- and the
bi-exciton only the first eigenstate is essential. Starting with the tri-exciton higher states
get important as well.

Due to the fact that the effective hole mass is four times greater than the effective electron
mass, the holes are much more localised than the electrons. This causes a peak of positive
charge in the dot surrounded by a wider area of negative charge, which can be observed
in the electrostatic potential, cf. Figure 13. Thus, the effective potentials are deformed
such that the potential valleys get deeper with a further lowering for the electrons in the
dot region. Concerning the holes, an additional peak inside the valley is generated. This
effect is even stronger for a larger number of particles, cf. Figure 13, and causes the lower
eigenstates to increase with the number of excitons.

The values in Table 1 and Figure 14 illustrate that the negative charges cause an overall
decrease in the eigenvalues, due to the widening of the potential valleys. The exciton
eigenstates are thus energetically lower than those of the reference system. However, when
increasing the number of excitons, the energies of the electron states decrease because of
the positive charged peak, while the hole states increase, due to the same effect. But
still this configuration easily allows a localisation of three excitons inside the dot. The
dashed regions in Figure 14 indicate the occupied states involved in the composition of the
densities of the excitons, cf. bold font in Table 1.

Beside pure exciton states we can as well consider ionised excitons. In Figure 15 the
solutions for XX- and XX+ calculations are shown. Depending on the type of ionisation,
the solutions show a stronger localisation for the electrons or holes. Furthermore, the
electrostatic potential reacts sensitively on the occurring net charge distribution.

23



Figure 15: Ionised exciton calculations for the quantum well reference system with har-
monic cutoff potential. a) XX-, b) XX+4. From left to right: solution (electron), eff.
potential (electron), solution (hole), eff. potential (hole), electrostatic potential.

4.3 3D Exciton Localisation in Cylindrical Quantum Dot

Let us now come to the previously described cylindrical quantum dot structure, cf. Sec-
tion 4.1 and Figure 1. The device radius is set to 10 nm an the thickness of the well is
2nm. The radius of the embedded dot is set to 2nm.

4.3.1 Single-Particle States

As for the reference system, we can now calculate single-particle states for the cylindrical
quantum dot structure. This is what we are essentially interested in. In Figure 16 we see
the eigenvalue spectrum for electrons and holes.

-3 electrons -3 holes
20 x 10 ‘ ‘ ‘ ‘ 8 x 10 ‘

i i
A —— calculation
_4 = 4
- - - QD region
-6 - - - QW region | |
- - - Bulk region
_5 i i i i _8 i i i i
0 20 40 60 80 100 0 20 40 60 80 100
#EV #EV

Figure 16: Eigenvalue spectrum of cylindrical quantum dot structure. Dashed lines mark
spectrum essentially located in quantum dot (red), quantum well (cyan) and bulk material
(violet).
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The regions the eigenstates live in are indicated by the dashed lines; quantum dot, quantum
well or bulk material. For the electrons we can clearly observe the transitions in the
spectrum from quantum dot to quantum well (around eigenvalue #4) and from quantum
well to the bulk (around eigenvalue #25). However, since the quantisation energy of the
holes is much smaller, due to the bigger mass, the spectrum is much denser. And hence,
the calculated first 100 eigenvalues all belong to quantum dot or quantum well states.
Nevertheless, the main observation is that there is a sufficient number states inside the
quantum dot to allow for a localisation of excitons.

4.3.2 Multi-Particle States

The results for single, bi- and tri-excitons are shown in Figure 17. As we can see, all
the excitons localise in the dot as expected and again we observe for the holes a stronger
localisation, due to the higher mass. As was observed for the reference system, the effective
potential for the holes comprises a peak inside the dot region. This will prevent a decreasing
of the (hole) eigenstates, when increasing the number of excitons.

0 -
“ “
-
C) 1064 1.0e+02]

Figure 17: Exciton calculations for the cylindrical quantum dot structure; a)exciton (X),
b)bi-exciton (XX), ¢) tri-exciton (XXX). From left to right: solution (electron), eff. po-
tential (electron), solution (hole), eff. potential (hole), electrostatic potential.

The eigenvalues in Table 2 show this behaviour even more clearly. The electron eigenvalues
belonging to the exciton states decrease with the number of excitons, whereas the hole
states do not, due to the positive charged peek. Additionally we can identify degenerated
states by their values. Again we indicate the occupied states that are involved in the
composition of the densities by bold font.
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ZEV 1 2 3 4 5 6 7 8

ref. | -0.0019 |0.0025 |0.0025 | 0.0027 | 0.0031 | 0.0031 | 0.0032 | 0.0032
X [-0.0037 | 0.0018 | 0.0018 |0.0026 | 0.0029 | 0.0029 | 0.0031 | 0.0031
XX [-0.0044 | 0.0015 | 0.0015 |0.0026 | 0.0029 | 0.0029 | 0.0031 | 0.0031
XXX |-0.0052 | 0.0009 | 0.0009 |0.0025 | 0.0027 | 0.0027 | 0.0030 | 0.0030
HEV 1 2 3 4 5 6 7 8

ref. | -0.0076 | -0.0053 | -0.0053 | -0.0026 | -0.0026 | -0.0022 | -0.0017 | -0.0001
X [-0.0089 | -0.0066 |-0.0066 |-0.0036 | -0.0036 | -0.0034 | -0.0029 | -0.0011
XX |-0.0090 | -0.0067 |-0.0067 |-0.0038 | -0.0038 | -0.0035 | -0.0029 | -0.0013
XXX | -0.0086 | -0.0065 | -0.0065 | -0.0036 | -0.0036 | -0.0032 | -0.0026 | -0.0010

Table 2: Eigenvalues of exciton calculations for the cylindrical quantum dot structure.
Electron (above) and hole (below) eigenvalues for exciton, bi-exciton and tri-exciton cal-
culations. Occupied states are indicated in bold font.

The results just presented in Figure 17 and Table 2 are the exciton states we are interested
in, calculated by solving the Kohn-Sham system self-consistently. In what follows, we
want to deal with the question of how to calculate these results fast and efficiently. We
will deal with this topic in the next section, which is about the numerical treatment of the
Kohn-Sham system.
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5 Numerical Treatment

In this section the presented example of a quantum dot within a quantum well from Sec-
tion 4 is dealt with from the numerical point of view. Particularly, this means numerically
solving the Kohn-Sham system in three space dimensions. Our goal is to establish an
efficient algorithm for iteratively finding the self-consistent solution to the Kohn-Sham
system.

Since the most time-consuming part of the calculation is the solution of the Schrodinger
eigenvalue problem, we evaluate efficiency by means of the total number of eigenvalue
problems solved during the iterative process. As already described in Section 3 the used
representation leads to a fixed point formulation based on the particle density. But this
fixed point mapping generally is not a contraction and thus a straight forward iteration,
such as Picard (or Banach) does not work. Simple damping strategies like linear mixing, cf.
[68], are usually used to get a convergent scheme. However, such schemes mostly suffer from
slow convergence rates making them too costly. Hence, acceleration procedures have to be
used, e.g. Newton-like schemes, which are known to converge quadratically. Unfortunately,
although successful when regarding the number of iteration steps only, these acceleration
methods are very expensive or even impossible to apply, due to the necessity of computing
the (approximated) Jacobian in every step.

In quantum chemistry iterative procedures for Hartree-Fock or Coupled Cluster [40, 60, 97
calculations are often accelerated using the direct inversion in the iterative subspace (DIIS)
scheme, invented by Pulay in 1980, cf. [80]. This scheme mixes a larger number of previous
iterates to create a better guess. Due to the extrapolation ability, i.e. negative coefficients,
of the original DIIS scheme, it is not safely applicable to our Kohn-Sham fixed point
iteration that is based on the, necessarily, positive particle density. In order to apply this
acceleration method we add further constraints when calculating the coefficients. We thus
ensure positivity of the composed density.

In this way the idea behind DIIS is carried over in a secure way to our density-based
iteration process. The invented scheme will be called conver DIIS (CDIIS) method and it
represents a high-dimensional generalisation of the simple linear mizing scheme, [68]. The
performance of CDIIS is tested on the exciton calculation presented in Section 4. It turns
out to be faster than linear mizing and more efficient (i.e. less total number of function
evaluations) than the Newton-like scheme, since it only needs a fixed number of function
evaluations per step.

The section is organised in the following way. Technical and environmental settings are
described in the first part. Then, in the second part, we describe the iterative procedure for
setting up the fixed point iteration schemes and simple self-consistent iterations are pre-
sented. Damping strategies for these iterations are dealt with in the third part, including
adaptivity. The fourth part is denoted to acceleration schemes for the iterative procedure.
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5.1 Environmental Settings

Let us first fix the system under consideration. Assume N, and N, to be given positive
integers describing the total number of electrons and holes, respectively, in the device
domain. The Kohn-Sham system for the electron- and hole-density, n. and nj,, and the
electrostatic potential ¢ then reads

Schrodinger (electron): [%V - (me) IV + V.(ne, nh)] Vei = Eeie
Schrédinger (hole):  [3V -+ (my,) 'V + Vi(ne, nn)] Yni = Enitni

Poisson: %V eV =np, —ne
with

‘/e(na nh) - ‘/O,e + V;cc,e(nea nh) — @
Vi(ne,np) = —Von + Vaen(ne,np) + ¢

ne(z) = 2 Z f(Eer = Eep) e (@)
k=0

nu(z) = 2> f(Enk — Enr)lbni(@)

k=0

2 oo f(Eer—Er)=Ney 2370 f(Enp—Enr) =N,
1

15) = ez

The device domain will be the cylindrical quantum dot structure described in Section 4. For
the Schrodinger operators we assume homogeneous Dirichlet boundary conditions on top
and bottom of the cylinder and homogeneous Neumann conditions on the sides. Concerning
Poisson’s equation we regard homogeneous Dirichlet conditions on the whole boundary.
The external potentials V. and Vj ), are the band-edge offsets originated in the effective
mass approximation as specified in Section 4. The remaining material parameters are
chosen in accordance to the previously described example as well. For the exchange-
correlation V.. and V,.; we will use the local density approximation (LDA) coming from
the homogeneous electron gas, see Appendix A for a precise description,

3 1/3
(z)

s

3 1/3
(em)

s

As working temperatures for the device calculation we choose either 4K, 77K or 300K. The
last one means operating at room temperature, whereas the first two are chosen in accor-
dance to physical cooling processes, which often are used to analyse material properties.

V:vc,e (ne7 nh) -

M= ™|

vxc,h (n€7 nh) —
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Note that the 4 K-case is the most singular among the three and thus we will use this case
when testing the algorithms.

Because of the decreasing property of Fermi’s function f, summation over eigenstates are
assumed to be effectively finite. The number of eigenstates taken into account depend on
the Temperature T and the number of particles N, and N}, of the problem, usually about
six to nine.

As a convergence indicator of the fixed point procedures we will use the following relative
error term of the particle density n; = (n.;, np;) at iteration i

N () — i

72l

7 )

where we speak of convergence, when the relative error r; is smaller than or equal to 1078,

Tm+1

Tm

Convergence rates will be measured on the basis of the reduction factors gy, 41, =
More precisely, we use the geometric mean

=

T'm+k k
Om+km = (Qerk,erkfl IR Qm+1,m) = , 5
which (in linear problems) is known to be a good approximation of the spectral radius of
the underlying scheme for large k, cf. [37].

The implementation was done in the framework of WIAS-pOelib2, which is a collection of
software components for creating simulators based on solving partial differential equations.
This toolbox was developed and implemented at the Weierstrass Institute for Applied Anal-
ysis and Stochastics (WIAS, Berlin), [25].

Single Particle States

For the single particle states we used the Finite Volume ([22]) based solver included in the
pdelib2-toolbox by J. Fuhrmann and T. Koprucki, cf. [59]. The authors showed the effec-
tiveness for one-, two- and three-dimensional problems, to which exact analytic solutions
are known. The solver is capable of treating jumping coefficients in the effective masses and
the potentials correctly and thus is an adequate tool for treating our quantum dot example.

Grid Generation

For creating adequate grids on the computational domain we used the mesh generator Tet-
Gen, written by H. Si [92]. It produces quality tetrahedral meshes for any three dimensional
polyhedral domain. Furthermore, the grids created this way are Delaunay triangulations
ensuring high quality tetrahedrons that are suitable for solving partial differential equa-
tions. Moreover, the produced grid is unstructured and can easily be adapted and refined
locally, according to the requested accuracy of solutions to the partial differential equations
that have to be solved. The notably higher complexity in organising the grid structure is
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supported by the WIAS-pOelib2 toolbox.

Linear Solver

As a solver for linear systems of equations, e.g. Poisson’s equation, we will use the sparse
direct solver package PARDISO written by Schenk, Géartner et al. [88, 85, 89, 86, 87].
PARDISO supports a wide range of problems and is shown to be highly efficient, [34].
For symmetric problems, which we mainly deal with, it essentially performs a Cholesky
factorisation PAPT = LL*, where P denotes a symmetric fill-in reducing permutation.
Additionally, different types of pivoting strategies are used to increase performance and
accuracy.

Eigenvalue Solver

The Schrodinger eigenvalue problems will be solved using the numerical software library
ARPACK (ARnoldi PACKage) for large sparse problems, written by Lehoucq, Maschhoff,
Sorensen and Yang, [63, 64, 65]. It is based on an algorithmic variant of the Arnoldi process
called the Implicitly Restarted Arnoldi Method (IRAM). In case of a symmetric matrix the
algorithm reduces to the Lanczos variant, called the Implicitly Restarted Lanczos Method
(IRLM). In essence, these methods combine the Arnoldi/Lanczos process with the Implic-
itly Shifted QR technique, which is appropriate especially for structured sparse matrices.
We will use ARPACK in the shift-invert mode with zero shift such that the requested
eigenvalues are the smallest ones.
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5.2 Self-Consistent Iteration (Picard Iteration)

The system just presented will be solved using a fixed point representation. To this end
we introduce the function A, mapping a given density n = (n.,n;) to another density
N (n) such that a fixed point of (7, 75) = N provides a solution (n, ) to the Kohn-Sham

system. ¢ denotes the solution to Poisson’s equation. When evaluating A (n) the following
set of operations is done.

Algorithm 5.1 (Fixed Point Mapping N).

o Given: n

e get o by solving Poisson’s equation with right-hand side ny — n.
e compute exchange-correlation potentials Ve, and Vi p using n
e compute effective potentials V., and V},

e solve Schridinger’s problem for the different species and get {Ecx}, {Ver}t, {Enkt
and {Vn )

o compute Fermi levels £ p and &, p according to N. and Ny, respectively

e compute new densities n, and ny
Remark 5.2. Note that the mapping N defined in this way allways has a fized point, since

they coincide with solutions to the Kohn-Sham system. And according to Section 3 the
Kohn-Sham system allways has a solution.

With this procedure we can set up a simple Picard Iteration, meaning to repeatedly apply

N.

Algorithm 5.3 (Picard Iteration).

e Given: density ng
e ;=10

e while 'not converged’ do

Nni+1 = N(TZJ
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1+ 1+1
e end

In comparison to that, we can introduce another algorithm according to the second fixed
point mapping described in Section 3 on analytical considerations. There, the exchange-
correlation potentials are built using the electrostatic potential ¢ coming from the self-
consistent solution of the corresponding Kohn-Sham system without exchange and corre-
lation effects. We denote by N the fixed point mapping similar to Algorithm 5.1, but
assuming the exchange-correlation potentials V.., Vi to be given. We thus get

Algorithm 5.4 (alternative Iteration).
e given: density ng
o i:=0

e while 'not converged’ do

‘/a:ce = V;vc,e(ni); vac,h = ‘/acc,h(ni)

ng :=mn;3 5:=0

while 'not converged’ do
fije1 = N (i)
Jj<—J+1

end

nit1 = N(7i;)

11+ 1

e end

Before going further, let us take a closer look on the differences of Algorithms 5.3 and 5.4.
First note that the essential difference between both algorithms is the number of iterations
the procedure takes before adapting the xc-potentials. Algorithm 5.4 adapts only when the
self-consistent solution according to the actual potentials is reached. Whereas Algorithm
5.3 adapts immediately. In this way Algorithm 5.4 makes sure, that when exiting the
inner loop, the xc-potentials and the electrostatic potential fit together. This might have
a positive effect on the overall iteration in the outer loop.

Let us point out that the Kohn-Sham system without exchange-correlation potential can
be reformulated to a non-linear Poisson equation, cf. Corollary 3.45. As shown by Kaiser
and Rehberg [47, 49, 50] the involved operator is monotone and continuous, and thus the
problem yields a unique solution for every given external potential. Therefore, the inner
loop of Algorithm 5.4 yields a unique solution 72;.
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As shown in Section 3 the particle density operator A is Lipschitz continuous but not
necessarily a contraction. Hence, in order to get a converging fixed point iteration we need
to introduce a damping factor o € (0, 1]. Changing the corresponding lines in Algorithm
5.3 and 5.4 to

Ni1 = N(nz) M N1 = (1 — oz)ni + Oé./\/’(nl)
niv1 = N(iij) ~ nip = (1= a)i; + aN (i),

yields the damped versions of these algorithms, cf. Algorithm 5.5.

10 !

— Picard Iteration
—— alternative Iteration

rel. error

iteration steps

Figure 18: Comparing residual evolution for the damped Picard iteration (Algorithms 5.3)
and the damped alternative iteration loop (Algorithm 5.4). The damping factor is set to
a = 0.6.

Figure 18 shows a comparison of the residual evolution for Algorithm 5.3 and 5.4 (damped
versions) of single-exciton calculations for the quantum dot structure at a temperature of

4K.

As an initial value ng for starting the iteration we chose the densities that result from
solving the Schrodinger problems with effective potentials consisting only of the band-edge
offsets, V. = Vy . and Vj, = Vj 5.

As can be seen the advanced variant of the simple (damped) Picard iteration given by
Algorithm 5.4 shows a better performance than the original (damped) Picard iteration from
Algorithm 5.3. Thus, the adjustment of the xc-potentials and the electrostatic potential
carried out by the inner loop of Algorithm 5.4 indeed is beneficial when regarding the
error in the outer loop only. Table 3 shows the corresponding convergence rates g,
which of course are better for the alternative iteration scheme. However, the price for
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Algorithm 5.3 | Algorithm 5.4
N=1 0.4655 0.4048

Table 3: Convergence rates ggo for the damped Picard iteration (Algorithm 5.3) and the
damped alternative iteration loop (Algorithm 5.4) from Figure 18.

this performance increase is way too big. This can be understood by regarding Table 4,
showing the number of solved eigenvalue problems of the different approaches.

Algorithm 5.3 | Algorithm 5.4
N=1 46 924

Table 4: Number of solved eigenvalue problems for the damped Picard iteration (Algorithm
5.3) and the damped alternative iteration loop (Algorithm 5.4) from Figure 18.

In fact Algorithm 5.4 solves about 20 times more eigenvalue problems than Algorithm
5.3. Since the main computational cost is the solution of the eigenvalue problem, the time
needed to solve the problem is 20 times as big as well. Thus, the improvement in perfor-
mance by adjusting the (xc- and electrostatic) potentials is not worth the effort. In what
follows we will solely use the fixed point mapping indicated by Algorithm 5.3, meaning
that it will be the basis of all upcoming strategies.

5.2.1 Fixed Damping (Krasnoselskij Iteration)

Let us now have a closer look on the fixed damping strategy. In a first description damping
strategies can be considered as strategies for increasing the radius of convergence for the
corresponding Picard-iteration. However, this would imply that damping strategies are
only feasible for contractive (or non-expansive) mappings. This is by far not the case. In
fact it ensures convergence for a much wider class of fixed point operators, such as (gener-
alised) pseudo contractive an p-contractive ones, cf. [1]. Additionally the requirements on
the underlying spaces are weaker compared to Picard-operators. Thus, it is worth using
damped iterations as a first step towards fast and robust schemes. Let us recall that the
non-linear Poisson operator that results when omitting the xc-potentials is monotonous.
Hence, there is a close connection to fixed point iteration schemes, cf. [28], that gives
another justification for applying damped schemes on our problem.

Let us now catch up for the algorithmic variant indicated in the previous part.

64



Algorithm 5.5 (Damped Iteration).
e Given: density ng; damping factor a € (0, 1]
e ;1 :=0

e while 'not converged’ do

Niy1 = (1 — a)nl- + Oé./\/-(nz)
14— 1+1
e end

Apart from theory about fixed point iteration schemes this method is known in DFT as
linear mizing, cf. [68], meaning to generate a new approxunated input-density n!; by
linearly mixing the input and output density from step i, ni* and n?* respectively. The
latter is just M'(ni") in our notation. Rewriting the scheme yields

a)n; + aN(n;) = n; + a(N(n;) (5.1)

N1 = (1 — — le) .

In absence of further information the direction N'(n;) — n; is the best steepest descent
direction available. To get an upper bound on the steplength a we take a look on the
following linearised problem for the error function R(n) = N(n) — n,

0= R(nip1) =

& Nyl = Ny —

R(ni) + Jr[ni](niss — ni)
Jg ! [na (N (n;)

et i) R(ni) = iy = n; — —ny).

Thus, the damped iteration (5.1) corresponds to a relaxed Richardson iteration with the
inverse Jacobian J5'[n;] approximated by the identity. For such an iteration it can be
shown (cf. [37, Ch. 4]) that the scheme converges if and only if the steplength o does
not exceed 2/Amax(Jr[ni]), where Apax(Jg[ni]) denotes the maximal eigenvalue of Jg[n,].
A thorough analysis concerning linear mixing procedures can be found in [17]. Thus, one
cannot usually expect the simple Picard iteration (v = 1) to converge.

a=02]a=03|a=04|a=05|a=06|a=07]a=08| a«=0.9
N =1/ 0.8226 | 0.7337 | 0.6445 | 0.5550 | 0.4655 | 0.3762 | 0.2880 | 0.3814
N =21 08217 | 0.7327 | 0.6440 | 0.5560 | 0.4669 | 0.7302 div. div.
N =3 | 0.8027 | 0.7049 | 0.6094 | 0.5141 | 0.5824 | 0.8904 div. div.

Table 5: Convergence rates oo for the damped Picard iteration with various damping
factors o from Figure 19.

Figure 19 shows calculations for Algorithm 5.5 with different damping factors. We can see
that for each problem there is an optimal damping value « for which the iterative process is
the fastest among all converging processes. This is easily motivated by the consideration,
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Figure 19: Comparing residual evolution for the damped Picard iteration (Algorithm 5.5)
with various damping factors a.

that a somewhat too small steplength o may produce a converging iteration but takes too
many iterations before approaching the limit. On the other side, a big steplength may
converge faster but risks to leave the radius of convergence. Hence, the main task in these
kind of approaches is the correct choice of the steplength ov. The corresponding convergence
rates to Figure 19 are summarised in Table 5.

Furthermore, the problem of finding an optimal o can be written as an 1D optimisation
problem similar to

Qopt = arginin{\|N(ni+1(a))—ni+1(a)|\ c niy1(a) = (1—a)n;+aN(n;), a € (0,1]}. (5.2)

Typically the analytic solution to this problem is unknown and solving it approximately
with high accuracy may be very expensive. Thus, one usually is satisfied with a prior:
estimates giving upper bounds on a, cf. [17]. Note that it is usually not possible to find
a single optimal damping factor for a whole class of problems. This is due to its strong
dependence on different input values like the geometry, the initial value or other input
data such as source terms. Another alternative is the adaption of the steplength in each
iteration step which will be the topic of the next part.
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5.2.2 Adaptive Damping (Kerkhoven Stabilisation)

As seen previously it may be disadvantageous to fix the steplength at the beginning of the
calculation and keeping it throughout the iteration process. Depending on the operator
and the current iterate it might be beneficial to take an adjusted steplength «,,. For exam-
ple at the end of the iterative process it is likely to be in the contractive area around the
fixed point of the functional, which makes it worth trying bigger steplengths. Conversely,
at the beginning of the calculation it is rather unlikely (depending on the quality of the
initial value) to be steadily successful in each iteration step when using big steplengths.
As mentioned before solving the problem (5.2) for an optimal «,, might be too expensive.
Therefore we will use an adaption strategy which means using information gained in previ-
ous steps to estimate a reliable damping factor. This (particular) strategy was introduced
by Kerkhoven et al. ([54, 55, 52, 53]) for the simulation of quantum wires.

The algorithm presented below is a variant of the stabilisation by adaptive underrelaxation
approach used by Kerkhoven et al.

Algorithm 5.6 (Kerkhoven I (stabilised) Iteration).

e Given: density ng

® set: n_1:=0; n_y :=nyg
e av:=1;1:=0

e while 'not converged’ do

I (i) —7a] N (nim1)—miy |
ey ey el v vy m—

Y H/\/m—nmll
a4+ a*0.8; @ := min{a, IV () —ns ] 1

else
a + max{a/0.8,1}; &/ ==«
end
niv1 =1 —a ) +a/N(n);i+—i+1

e end

The adaption criterion uses the improvement ratio 7;

W) =il
' ||N(”z‘—1) —ni |

(5.3)

It gives an idea of the actual performance of the iterative process. If 7; < 1, then the
actual iterate n; seems to be a better approximation to the true solution n* than n;_; was.
Nevertheless, the criterion 7; > 7;_1 is mild, since it does not demand a reduction of the
error norm [N (n;) — n,|| itself. Instead, it keeps track on the overall performance of the

67



process in that it reacts when the improvement ratio gets worse. Note, that this allows
for a growing residual as long as the magnitude of increase does not grow itself. Thus,
the criterion gives the process the opportunity to get out of a local (error) valley where it
would get stuck in a gradient approach.

Only in the first step the improvement-criterion reduces to an error consideration, since no
further information are available. The criterion then reads

IV (10) = noll* > [INV(0)]* -

Meaning to lower the stepsize when the zero vector is a better approximation than the
initial value ny.

Further note that the improvement-criterion adapts the iteration by reducing the damping
factor when there is an indication that the bottom of a valley is reached. This is due to
the assumption that the iteration progress is fast as long as the solution is sufficiently far
away. Contrariwise, when approaching the solution cautiousness is advised.

As soon as the improvement-criterion is violated the algorithm chooses an even more
restricted steplength by
o =min{a, 7, '},

This is reasonable, since the foregoing approach of giving the procedure the chance of
leaving a possible valley, led to a situation where the iteration procedure seems to diverge.
Thus, when an unexpected large change in the error of the actual approximation occurs,
an even stronger damping is applied.

In Figure 20 wee see the results of a numerical test demonstrating the performance of this
approach compared to the (best corresponding) simple damping strategy, cf. Figure 19. As
we can see the performance of the adaption strategy has several stages. At the beginning of
the calculation it performs equally good or better compared to the damping with the best
choice of a (taken according to Table 5). During the calculation it might get much worse.
The reason for this is that the algorithm adapts «,, down near the minimal steplength of
0.05. When approaching the solution at the end (or a valley in between), the steplength
may recover and the improvement in every step gets big again. In Table 6 the corresponding
convergence rates are presented.

damped Iteration | Kerkhoven (stabilised)
N =1 0.2880 0.9324
N =2 0.4669 0.9312
N=3 0.5141 0.5899

Table 6: Convergence rates gy o for the damped iteration (Algorithm 5.5) compared to the
Kerkhoven (stabilised) scheme (Algorithm 5.6) from Figure 20.

Thus, Algorithm 5.6 shows the typical behaviour of an adaption strategy applied to non-
linear problems. At the beginning the algorithm is optimistic and adapts the steplength
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Figure 20: comparing residual evolution for the damped Picard iteration (Algorithm 5.5)
and the stabilised Kerkhoven iterations (Algorithm 5.6). Damping factors chosen in accor-
dance to the best result from Figure 19.

according to the complicated (error) landscape. With this, the algorithm tries to safely
stay in the region of convergence. Unfortunately, this (somewhat too) careful bearing leads
to a large and time-wasting number of steps which cannot be compensated by a possibly
good performance at the end. Thus, we will deal in the following section with possibilities
of accelerating the iteration procedure so that it passes the time consuming part without
getting stuck with too many small steps.

5.3 Quasi-Newton Scheme

With the methods described in the foregoing sections we mainly focused on safely finding
the solution. Now we want to deal with the question of how to find this solution fast and
efficiently. In the following we look at two different acceleration approaches. The first is a
Newton-like method which is known to show a good convergence behaviour, assumed that
the initial value is close enough to the solution. This means reformulating the fixed point
problem to a root finding problem and solving a linear system consisting (essentially) of the
Jacobian J of V. Since J is typically a dense system, explicit inversion is not recommended.
In the following we describe and use a nonlinear version of the GMRES method (cf. [84])
introduced by Kerkhoven et al. [56, 54]. This scheme provides us with the possibility to
apply a Newton-like scheme without ever generating the Jacobian.
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As the iterative procedure makes progress, we necessarily get close to the solution where
reliable acceleration techniques can be applied. We will apply the nonlinear GMRES
(NLGMR) method described in [56, 54]. To do this we have to reformulate the fixed point

problem into a (nonlinear) root finding problem
n—N(n)=0.
Newton’s method requires at each step ¢ the solution of the linear system
(I = J[n]) 6 = — (ni — N(ny)) (5.4)

to get the next iterate
Nit1 =i+ 0;.

The matrix I —J(n;) is typically dense and thus a direct inversion is not advised. Instead, a
nonlinear version of the GMRES method (NLGMR) is used that does not need to generate
the Jacobian, cf. [56, 54].

Let us first recall the idea of the GMRES algorithm. Solving (5.4) is equivalent to the
Euclidean minimisation problem

1L = N) i + (I = J[nil) bl (5.5)

for finding a new approximation n;,;. The vector 51-(7”) is represented in the form

5" = as;, (5.6)
j=1
where the set {v; : j =1,...,m} forms an orthonormal basis of the Krylov subspace

K™ = span{v, := n;, (I — J[n]) vy, ..., (I = Jn])™ "oy}

Having the operation x +— (I — J[n;]) v at hand these vectors can easily be calculated by
an Arnoldi process. The coefficients a; are to be determined for composing the solution
(5.6).

Minimisation of (5.5) is then done by applying the GMRES algorithm on equation (5.4).
Note, that solving this equation exact would give the Newton direction

— (I = J[na)) ™" (ns = N(ny))

Thus, this procedure is an inexact Newton method. As mentioned before the only operation
needed in the Arnoldi process is given by the directional derivative (I — J[n;]) v, meaning
a matrix-vector multiplication. Fortunately we do not need .J[n;| explicitly, since we can
approximate J[n;|v by a commonly used forward difference quotient

N(n; + hv) — N (n;)
- .

Jnilv =

(5.7)
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The only factor left to be adjusted is the dimension m of the Krylov subspace K™. Since
(5.4) is a linear model of a nonlinear operator it is appropriate to ask, whether it is useful
to solve it with a high accuracy. If the nonlinearity is strong it might be sufficient to keep
the dimension m small. Let n; be an approximate solution to n — N (n) = 0 and let ngm)
be the improved approximation after m steps of GMRES. To measure the nonlinearity
we now look at the nonlinear residual res, and the linear residual resy, coming from the
GMRES approximation
resy = n\™ — N (™)

K3 K3

resin = ni —N(ng) + (I = J[ng)) (n{™ = ny) .

If the nonlinearity is only mild the Euclidean norms of these expressions should be ap-
proximately equal. If not, the linearisation is not an adequate local approximation to the
original problem and thus it is probably wasteful to solve (5.4) very accurately. Hence,
m should be kept small in this case. Conversely, in case of good agreement, m should
be increased. In this way the dimension of the Newton-subspace is adaptively changed in
every step. To ensure an error reduction in every step a simple linesearch is performed in
direction of ¢;, for minimising

(s + A6™) = N (n; + A6"™) |12 .

Starting with a full Newton step the stepsize A is halved until either A < 0.1 or the error
at n;y1 is smaller than the error at n;.

Remark 5.7. Note that with this acceleration procedure a single step might get very expen-
swe. Firstly, the procedure has to evaluate N' m-times in order to create the basis of the
Krylov subspace K™ and with this the approximation of the Jacobian at the actual iterate
n;. And worse, calculated points from previous steps cannot be used and thus all m evalua-
tions really have to be done. Secondly, performing linesearch results in further evaluations
of N'. In comparison to that, the stabilisation procedure by adaptive damping takes only a
single function evaluation per step. The hope of course is that the quadratic convergence
behaviour of Newton’s method makes only few steps of NLGMR necessary, such that the
overall number of evaluations stays small. But this cannot be guaranteed in the first place
and the possibly good performance might be very costly.

The complete algorithm for Kerkhoven’s method with stabilisation and acceleration now
reads as follows.

Algorithm 5.8 (Kerkhoven II Iteration).
e Given: density ng
e set: n_1:=0;n_9:=ng;a:=1;1:=0

e do (stabilisation)
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if [N (i) —mi| IV (ni—1)—ni—1]|
IV (ri—1)—ni—1l IV (s —2)—n; 2|

o e Vi) =nia |l
a < ax0.8; o :=min{a, NV (n)—nil }

end
niv1=(1—a)n;+a/N(n;); i+ i+1
e until ‘convergence’ or 'a decreases 5 times in a row’ or '« remains constant for 10
iterations’
o m:=2

e while 'not converged’ do (acceleration)

n,fo) =Ny

do m steps of NLGMR to get 5"

if 2 < lresal < 3 then m < min{25,m x 2}

3 = ||reslm||
else
if 3 < Iresnll < 5 then m « m
2 — |lresiinl|

else m < max{2,m/2}
do ’linescarch’ in direction 6™ for A € [0.01,1] ||(n; + A6\™) — N (n; + A8™)||2
nit1 = (n; + )\51(7")); i—i+1
e end

Figure 21 shows a comparison of the residual evolution between the stabilised Kerkhoven,
the stabilised-accelerated (full) Kerkhoven and the fixed damping scheme. The full Kerkhoven
scheme shows a similar behaviour as the damped iteration at the beginning of the calcula-
tion. It is easy to see by the kink where the scheme changes from the stabilised iteration
to the Newton-like acceleration, cf. Figure 21. Thus, with this strategy we outperform
the damping approach. Unfortunately, we still need (when accelerating) a possibly (and

a priori unpredictable) large number of function evaluations, i.e. solution of eigenvalue
problems. This is due to the adapted dimension of the Krylov subspace and the linesearch
in the Newton step, see Remark 5.7.

In Table 7 the corresponding convergence rates can be found. Of course the values for the
full Kerkhoven scheme have to be understood as mean values between the adaptive damping
approach at the beginning and the Newton-type approach at the end of the calculation.
To get the rates for the Newton acceleration one could consider only the reduction rates
Om*+km+ Starting from the kink which would be much better, but we are interested in the
overall performance and thus the whole sequence of iterates is considered, i.e. o o.

In the final section we deal with a possibility of accelerating the scheme with a similar
performance as the Newton-like Kerkhoven-acceleration and simultaneously ensuring a
fixed (and low) number of function evaluations per step.
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Figure 21: comparing residual evolution for the damped Picard iteration (Algorithm 5.5),
the stabilised Kerkhoven scheme (Algorithm 5.6) and the full Kerkhoven scheme (Algo-
rithm 5.8).

damped Iteration | Kerkhoven (stabilised) | Kerkhoven (full)
N =1 0.2880 0.9324 0.1387
N=2 0.4669 0.9312 0.3187
N =3 0.5141 0.5899 0.3417

Table 7: Convergence rates gy for the damped Picard iteration (Algorithm 5.5) compared
to the stabilised Kerkhoven (Algorithm 5.6) and the full Kerkhoven scheme (Algorithm
5.8) from Figure 21.
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5.4 DIIS Acceleration

The second acceleration approach can be seen as a high dimensional generalisation of the
simple damping strategies of Section 5.2. Here the subspace of all previous iterates is
searched for an optimal (error minimising) vector. In two dimensions it reduces to an
optimal damping strategy similar in structure to the linear mizring scheme. The approach
we are going to describe is a convex variant of the direct inversion in the iterative subspace
(DIIS) method invented by Pulay [80] in 1980. It is a subspace acceleration method for
minimising the value of an error function belonging to some (nonlinear) problem. Since
its first description the DIIS scheme enjoys a good reputation in the quantum chemistry
community and has proven to be a powerful tool for accelerating Coupled Cluster and
self-consistent field (SCF) calculations, [40, 60, 97, 39]. Moreover, it may even turn a
non-converging iteration into a converging one. Although it is successful in practice, the
mathematical analysis does not seemed to be traced up so far.

After describing the main idea of DIIS we focus on the relation of DIIS to GMRES in
linear situations and we will point out the connection to (Broyden-like) secant methods
for the non-linear case. Unfortunately the original DIIS method found in literature cannot
be used for our problem, due to extrapolation effects that cause the iterates to leave the
solution space. Based on a formulation of the DIIS procedure motivated by Weijo et al. in
[97] we will introduce a new DIIS variant that includes an important convexity constraint.
We will call this method convexr DIIS or CDIIS, due to the convexity constraints, that
ensures the produced densities to stay in the solution space, cf. Section 3. The CDIIS can
be seen as a high dimensional generalisation of the linear mixing scheme. However, due to
its flexibility it outperforms linear mizing and even the Newton-like Kerkhoven scheme.

5.4.1 The basic DIIS Algorithm

Let us consider an equation of the form
F(z*)=0,

which we want to solve using the main iteration scheme I together with the DIIS acceler-
ation technique.
Assume a sequence X' = {7y, ..., Z;} of iterates to be already computed. The DIIS algo-
rithm now finds an optimised iterate z,, parametrised as
i
€T; = Z Cli’l s (58)

=0

in X* where the coefficient vector ¢ = (cq,...,c;) fulfils the constraint ijo ¢, = 1. This
constraint makes sure the trivial zero-solution is excluded. The optimisation is now per-
formed with respect to the residual norm ||F(xz;)||2. Rewriting z; as
i—1
vi=F+ Y ald — &) =3 +0; (5.9)

=0
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and using the following Taylor polynomials of degree one

F(&) ~ F(&)+ JplT] (3 — 74), (5.10)
we get
i—1
F(IZ) ~ F(fiz) + @] (F(jl) - F(fz))
1=0
= Z CZF(SCZ)
1=0
Thus, the coefficients (cy, ..., ¢;) are determined by the minimisation problem

c=(C0reC)

c= argmin {| > aF(@)| : Y a=1}. (5.11)
=0 =0

Note that for (affine) linear F' the replacement of ||[F(x;)|| by || Y_y ciF (&) is exact.
Introducing the Lagrange multiplier A, the solution to (5.11) can be computed by solving

the linear system
B 1 c 0
(1) (5)-(1): 5

where B € R with matrix entries given by by = (F(Zx_1), F(Z;-1)). Finally, the
next approximate iterate x;,; is given by applying a single step of the main Iteration I on
the optimal value x;

jiJrl = I(le) .
All in all we have an iterative procedure illustrated by

~ I . DIIS I . DIIS I . DIIS | DIIS
To=:Ty — X1 — X1 — Ty — ... > T; —> Tj > Tyl —> Tigl--- -

Thus, the DIIS scheme really is a family of procedures varying in the choice of the main
iteration I.

Algorithm 5.9 (DIIS Iteration).
e Given: zg; I; F
e set: X ={%};i:=0

e while 'not converged’ do
add FX,;=F(z;) to FX: {FXy,...,FX;_1}

atve (DY () (D) e
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get €Tr; — Z;:O Cl,ii’l
get :Z‘i—l—l = I(l‘z)
insert 7;,; in X514+ i+1
e end
By default the main iteration I is given by

Tip1 = I(z;) = x; — F(xy), (5.13)

which means it is the simple Picard iteration for solving the fixed point problem (1—F)z =
x.

Remark 5.10. Note, that for F(x) = Az —b this approach uses just the gradient direction
of the corresponding quadratic minimisation problem min %xtAx — bz,

Of course, regarding the previous sections we can think of many other choices of I, e.g.

damping: I(z) = ((1 —a)l — aF)
adaptive damping: I(z) = ((1 — a;)1 — o, F)

or any other procedure returning a new approximation z;.

5.4.2 Equivalence to GMRES (the linear case)

Let us in this section focus on the (affine) linear case with the default iteration (5.13),
meaning

F(z*) = A2"—-b=0
I(z) = z—F(z)=x2— (Az —b)

with A € RV*N and b € RN. Throughout this section we assume A to be positive definite.
Denote with K* := K%(%,) the Krylov subspace

K' = span{b — A%y, A(b — AZ),..., A7 (b— AZ)}. (5.14)
Recall, that GMRES finds the residual minimising solution z; in the affine subspace K =

To ® K. Define the DIIS solution space D := D(Zy, ..., ;) according to (5.8) and (5.9)
by

D' = {yeRY: y:chfl,chzl} (5.15)
1=0 1=0
= Z;®span{® —&; : 1 =0,...,i—1}. (5.16)
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Assumption 5.11. Let X* : {Zo, ..., Z;} be a sequence of iterates lying in K’ and spanning
it.

With this we immediately get
K'=span{i; — % : l=1,...,i}. (5.17)

Before stating the equivalence theorem we need to prove two preparative lemmas. The first
gives the connection between the affine Krylov space K' and the constraint DIIS space D"
The second shows that the DIIS scheme indeed minimises the residual norm when solving
the DIIS system (5.12).

Lemma 5.12. Let Assumption 5.11 hold true.
Then for the spaces K' and D¢ defined above, there holds

K'=D".
In particular the optimised iterate x; calculated by the DIIS scheme is in K for all i € N.
Proof. As can be seen by the definitions of K¢ and D’ there holds
dim K’ = dim D" .
Let y € RN be from K. We then get

) %

y = Fo+ Y alli—i) =) al

=1 =0

where we use the representation indicated by (5.17) and the definition ¢y :== 1 — Zlizl c.
Hence the coefficients sum up to one, >;_,¢; = 1, and we proved the inclusion K* C D"

For the other direction take y € RY from D’ and compute

%

y = Zczfl =(1- ch)fo + Zczfil
1=0 =1

=1
i
= I+ Zcz(fz — Tp),
=1

where we used the summation property ijo ¢; = 1. Hence y is given in the representation
(5.17) and we have D' C K'. This finishes the proof of D' = K'. O

Lemma 5.13. A vector y € D minimises the residual F(y) = Ay — b in the least square
sense, iff the coefficient vector ¢ = (cy, .. ., ¢;) together with the Lagrange multiplier X solves
the (DIIS) system of equations

(Vo) (5)-(V) o

The matriz B is determined by the entries By, = (F(Z;_1), F(Z1_1)).
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Proof. The minimisation problem
min{||F(y)|2 - y € D'} (5.19)

coincides with the problem of minimising the functional
1 i i
G(c) = §<A;clxl - b,A;cm — by,

over R with the constraint Z;':o ¢, = 1. Standard Lagrangian calculus applied to this
problem yields the system of equations (5.18) as a necessary condition. Since A is assumed
positive definite, (5.18) has a unique solution. And thus y = >,_,¢; is the unique
solution to (5.19) in D, O

Note that for v € K it holds F(v) € K™ and thus the updated set X" : {Zq, ..., i, Ti11}
again spans the next Krylov subspace K. With this we can now show equivalence of the
sequence computed by the DIIS accelerated procedure and the GMRES method.

Theorem 5.14. Let A be a positive definite matriz in RN*N and b € RY. Let F(z*) = 0
be the affine linear problem
Az* —b=0

and let I(x) be the operation
I(x)=x—F(x) =2 — (Az = ).

Further let o € RN be some initial value. Then the DIIS accelerated procedure described
in Algorithm 5.9 produces the same optimised iterates x; = > ,_ociZi, Y _oc = 1, as the
GMRES method.

Proof. The assertion is shown by induction over the iteration steps.

For i = 0 we have K° = D° = {Z,}. In particular the set of previous iterates X° : {Z,} lies
in the space K, thus fulfilling Assumption 5.11. As can be seen, a DIIS and GMRES step
yield the same minimisation problem and thus produce the same iterate xo = (. Since by
definition of I the next approximated iterate x; is given by

Zi’lzxo—F(l'g):Io—l-(b—Al'o),

the updated set X? : {Z, 7} fulfils Assumption 5.11 as well.

Inductive step ¢ — i+ 1. By induction hypothesis the set X* = {Z, ..., 7;} fulfils Assump-
tion 5.11. As shown in Lemma 5.13 the DIIS step minimises the residual ||F(x)|2 in the
DIIS construction space D'. The GMRES method minimises the residual in the Krylov
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subspace Ki. But, by Lemma 5.12, K* and D’ are the same. Thus one step of DIIS and
one step of GMRES yield the same optimised solution x;. Finally, we see from

Tipn = x;+b— Ax;

i—1
= x;+ b— A <i‘g + Z akAk(b — Ai’o)) (520)

k=0

i—1
= x;+ (b — A.i?o) — Z akAk“(b — Aio)
k=0

that the updated set of iterates X1 : {Z, ..., &;, Z;11} fulfils Assumption 5.11. In (5.20)
we used the representation indicated by the definition of the Krylov subspace (5.14).

This finishes the proof. O

So, for the (affine) linear case with a definite matrix the DIIS procedure computes exactly
the same optimised iterates as the GMRES scheme and thus it can be seen as a special
implementation of it. Of course this implementation is quite unfavourable, since it requires
to memorise the complete history of computed iterates. However, if the matrix A is in
addition symmetric Weijo et al. [97] showed that the DIIS scheme reduces to the conjugate
residual (CR) method when effectively replacing the set of approximated iterates X' :
{Zo,...,%;} by the optimised ones {xy,...,z;}. With this strategy they can omit a large
part of the history and restrict themselves to the last three iterates without loss of accuracy.
Further note that, like the GMRES scheme, the DIIS procedure is exact after (at most) N
steps.

Actually and fortunately, this procedure still makes sense for the nonlinear case and it is

as well easy to apply. Thus, it gives a version of the GMRES scheme that is appropriate
for nonlinear problems. We will deal with this case in the following.

5.4.3 Nonlinear Problems

Let us now look at the rootfinding problem

where F' is some nonlinear function. Since the DIIS procedure does not require explicitly
linearity of F' it is directly applicable to this problem. Meaning to minimise the residual
F(z;) of the optimised subspace solution z; € span{Z,...,#;} parametrised by z; =
Si_, iy, To compute the coefficient vector ¢ = (cy, . . ., ¢;) we replace the function F(x;)
by the (subspace) linearisation Sj_, ¢;F(#;). Thus, we end up with the same system of
(DIIS) equations (5.12) as in the linear case. When using the standard main iteration /
the next approximation is then given by
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Of course, unlike the linear case, exactness of the found solution cannot be guaranteed
after a finite number of steps. But still the DIIS scheme (and variants of it) has proven a
favourable performance in application, cf. [60, 39].

Before describing some variations to the original scheme that enhance the performance in
the nonlinear case, we demonstrate the relation of a general DIIS step to secant methods,
cf. as well [68].

As seen by (5.10) the Jacobian Jp of F' at the actual approximate iterate Z; is characterised
by the Taylor polynomials

F(&)) =~ F(Z;) + Jp[@](2 — %), 1=0,...,i—1.
With this we can define an approximated Jacobian M; := Jp [%;] = Jp[Z;] by requiring
M;(%; — &;) = F(3)) — F(Z;) . (5.22)

for every [ = 0,...,7—1 in the subspace spanned by the differences z; — z;. The equations
(5.22) are called secant conditions. Let us assume that both sets

Xi . {jo-i‘i,...,fi_l—j}i}

AY: {F(io) — F(%),..., F(F:_1) — F(&)}

are linearly independent. In the DIIS scheme the optimal approximation is now given by
i—1 i—1
T =Z; + Z a(i) — i) = + M ? ( a(F () — F(i‘z))) , (5.23)
where the coefficients are chosen, such that the following minimisation task is solved

i—1
min{||F(z:) + Y a(F(#) — F(i@))| : c€ R}
=0

i—1
= min{||F(7; +MZZCZ T — )|l : c € R}
1=0
where in the last step we introduced 0; := Z;;g a(z; — ;) and b; = —F(Z;). Regarding
the last minimisation problem, it is necessary and sufficient for ¢; to be the minimiser of

(5.24), that M;d; — b; fulfils the Petrov-Galerkin condition, cf. [83, Prop. 5.3]. Meaning it
is orthogonal to all vectors from M; X’ =YY" i.e

Since d; € X*, this means ’ .
M;6; = Pyb; = =Py F (%)
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where P} denotes the projector on AY". Thus (5.23) can be written in the form
T =T — M 'PLF(%;). (5.25)

Comparing (5.25) to classical secant methods, the optimised iterate should be given in the
form
i = Tj—1 — HZF(.Z'Z_l) y (526)

meaning, to compute the x; by use of x; ;. Analogous, by inserting the main iteration I,
we can formulate (5.25) in a generalised form of (5.26) by setting

w; = I(v; 1) — M; ' PLF(I(w;_)) . (5.27)

If I is taken to be the identity the generalised equation (5.27) reduces to the classical secant
method (5.26).

Remark 5.15. Note that choosing I(z) = x is a reqular possibility. While this choice does
not make sense in the linear case, it indeed does for nonlinear problems, when assuming
a set of linearly independent values {xo, ..., x;} to be given. However, of course, with this
choice one will only find an approximation in the subspace spanned by these values.

Furthermore, recall that according to the Dennis-Moré theorem (1974), cf. [18, Thm.
8.2.4], a sequence of iterates that converges and is generated by a rule like (5.26) converges
superlinearly, iff the sequence (M; — J(z*))s;, with s; = z;,1 — x;, converges superlinearly.
Where the only additional assumptions are regularity-type assumptions on F', Jr and the
matrices H;. Thus, a sequence produced by a DIIS procedure is likely to behave similar
when choosing the main iteration I carefully.

Remark 5.16. As mentioned at the beginning of this section we used the DIIS formulation
motivated in [97]. There are (at least) two further formulations closely related to this one,
which we will shortly introduce. The first is the original description of Pulay [80] for
accelerating self-consistent field iterations. He assumed a set of iterates {p',...,p™} to be
giwen that come from a quasi-Newton-Raphson procedure of the form

P =p - Hy'g,

where g is the gradient OE/Op at p' and Hy' an approvimation to the inverse Hessian
matriz. Pulay called this procedure simple relaxation (SR) after its application in geometry
optimisation. His idea was to accelerate the SR procedure by finding a better approximant
in the current subspace of known iterates, i.e. p = Zf:ll cipi- Denoting the true solution
by p! this can be written as p = S ei(pt + ) = pf ST e + S0 el Thus, in
order to minimise the actual error ||p — p’||?, the second term has to vanish under the
condition Z;Zl ¢; = 1. Since the true solution is unknown, Pulay replaced the error e
by ptt — pt. This immediately leads to the famous DIIS system of equations. Having the
subspace optimum p, Pulay then performed another step of the SR method and added the
new iterate to his set. It is clear, how his formulation relates to our notation. Firstly,
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as an error measure ¢! we use the distance between input- and output-density instead of
the distance between two procedure-iterates. Secondly, Pulay’s formulation describes the
special case of I being his SR procedure. And third, Pulay’s SR-Iterates p' correspond to
our approximated iterates T;.

The second (further) formulation can be found in [{0]. There the authors abstain from
defining an intermediate step like x; ~ Tiy1 (or p ~ p™') and instead directly go to a
new approximation by setting xiy1 = >, ci(z; +€;) =D . cixi + >, cie;. Here e; describes
the actual error at x;. The coefficients are then determined in the usual (DIIS) way. The
relation to our formulation is quite clear. The term ) . cx; still describes the optimal
subspace solution xqy. But, instead of checking convergence at this optimum, the authors
directly look at a new approximation which is near the optimum when the vanishing of the
second term is assumed. Thus, this choice of monitored iterates is reasonable. Note, that
the application of the underlying main iteration I(Topt) = Topt + Y ; Ci€; in this formulation
15 not constant but is adapted according to the coefficient vector c. Furthermore, this
formulation is as well variable in the choice of the error measure e.

Looking at typical applications, one evaluation of F' is usually quite expensive. Thus it is
favourable to have as few function evaluations as possible. Regarding the DIIS procedure
just presented we have two function evaluations per iteration step F'(Z;) and F(x;). To
avoid the evaluation of F'(x;) we can replace it by the minimised sum »",_, ¢, F'(%;), which
are equal in the linear case. For the nonlinear case it is assumed to be a good approximation
to it. The algorithm then reads

Algorithm 5.17 (DIIS Iteration (single evaluation)).
e Given: zg; I; I
o set: X ={%};i:=0

e while 'not converged’ do

add FX; = F(%) to FX : {FXo,...,FX;_1}

atve (2 1) (5)= (0 tor e e e

) ~
get v, =) ,_,aly
~ 7 ~
get T =x; — ) ,_oalF(3;)
insert 7;,; in X514+ 1+1

e end

In particular this means, choosing the main iteration as an adaption to the actual history
of iterates, cf. Remark 5.16. Of course there is no indication, whether this variant performs
better or worse than the original one. But it needs one evaluation less.
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Besides the freedom of choice concerning the computation of the next approximated iterate
ZTni1, 1.e. the choice of I, we can as well adapt the set of memorised iterates. An example
of this strategy can be found in [97]. There the authors memorised the actual optimal
iterate x,, instead of the approximations z,,. The corresponding algorithm reads

Algorithm 5.18 (DIIS Iteration (optimised memory)).
e Given: zg; I; F
e set: X ={%p};i:=0

e while 'not converged’ do
add }71)(Z = F(.ﬁi’l) to F'X : {FXo,...,FXifl}

atvo (2 1) (5) = (2 tor e e

get x; = Zfzo Ty

replace z; by z; in X
replace FX; by F(x;) in FX
get T, = I(x;)

insert z;,; in X514+ 1+1

e end

As shown by Weijo et al. [97] in the linear case, this version allows to shorten the history
down to three iterates in the past without loss of accuracy. Of course, again, it is not
guaranteed that this variant will work better than the original one, but for nearly linear or
mildly nonlinear problems it should perform good since the information from the optimal
subspace solutions x; are kept explicitly. However this variant still takes two function
evaluations per step.

5.4.4 History Shortening

Another important variation is the possibility of history shortening. This means consider-
ing only a certain number of previous iterates at every step. This number can be chosen
fixed in advance or be adapted during the iterative process (trust region strategy). For
linear problems shortening the history of the original DIIS scheme (Algorithm 5.9) is coun-
terproductive since every information stored in the iterates is needed in order to guarantee
convergence after (at most) N steps. Only with further changes in the method that ensure
maintaining of gained information, a shortened history might be advantageous.

In contrast to that, shortening the history seems to be essential for nonlinear problems,
since it provides the opportunity of getting rid of wrong information and preventing it
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from getting too memory expensive. Furthermore, for nonlinear problems the DIIS scheme
tends to find a solution in a linearised subspace spanned by the previous iterates. The
bigger this subspace is, the stronger is the assumption of linearity of F' in this subspace.
Thus, in order to prevent the scheme from assuming the whole problem to be linear, the
history has to be shortened.

On the other side shortening the history too much troubles the convergence, since needed
information might be lost. Hence, it seems valuable to carfully choose the length of the
history for the problem at hand.

A general algorithm incorporating short histories is given below

Algorithm 5.19 (DIIS Iteration (short history)).
e Given: z; I3 F
e set: X ={%y};i:=0

e while 'not converged’ do
add FXZ = F(.{i‘z) to FX: {FXO,...,FX,L',l}

atvo (2 1) (5) = (2 tor e e

get ;= >1_, o

get T, = I(x;)

delete elements from X
insert 7,,; in X; i<+ i+1

e end

Certainly all of the mentioned variations can be applied simultaneously in an appropriate
way. For example, when using a shortened history one can use a reordering of the set X?,
such that the corresponding sequence of residuals is monotonously decreasing. In this way
the adaption process for X* keeps good approximations and deletes bad ones.

84



5.5 Convex DIIS

As described before, a standard method when solving the Kohn-Sham system from density
functional theory is the two dimensional linear mizing scheme

nt, = an? + (1 —a)n™, (5.28)
where n¢“ = N'(n™) and a > 0.
Beside the known general upper bounds on the steplength « (cf. [17]), there is another
effect causing low convergence rates, namely charge sloshing, cf. [60, 58, 81]. This in-
stability effect mainly is a problem in metallic systems, but can occur in inhomogeneous
non-metallic systems as well. It is caused by vibrational changes between several configu-
rations that result in a likewise vibrating Hartree-term which then dominates the effective

potential. Breaking the sloshing when using the linear mizing scheme is only possible by
use of short steplengths (typical range o € [0.01,0.1]).

As shown in [17] the convergence criterion for (5.28) is
|1 - O[:ul| <1 )

where p; denotes the i-th eigenvalue of the Jacobian J of /. When approaching a stable
solution the eigenvalues fulfil g; > 0 and thus an adequate choice of a is necessarily
positive. However, when using (badly chosen) approximations to the Jacobian during
some iteration process or one is interested in unstable solutions, it might be p,;, < 0.
In this case the solution process diverges. In principle, to get convergence for the fi,in
component, a negative « is then needed. This however, would destroy convergence of all
remaining (positive) components. Hence, unstable solutions cannot be computed with this
approach and the constraint o > 0 is applied in linear mizing.

In contrast to that, the DIIS method was originally introduced for accelerating self-
consistent field (SCF) or Hartree-Fock calculations. There the mixing procedure was used
to combine electron orbitals. It is used in this way, for example, in the wavelet based code
package BigDFT, [30]. Since wavefunction at certain points in real space can be both, pos-
itive or negative, there are no further constraints on the coefficients except the requirement
of summing up to one. Particularly, negative coefficients are possible. Indeed, Kresse and
Furthmiiller in [60] explicitly allowed for negative coefficients when the DIIS subspace is
of dimension two. This was needed in order to recognise a false moving direction.

When considering the Kohn-Sham system from density functional theory the situation
changes completely since the object of interest (the charged particle density) is related to
the orbital wavefunction by |¢)|2. Hence, together with the occupation numbers the density
is a positive function and negative values will never occur. Thus, unlike mixing schemes
for orbital calculations, density mixing reacts sensitively to negative coefficients. This is
due to the structure of the solution space (cf. Section 3)

K:={(n,p) : n,p€ Lg,n,p>0, /ndx:Nn, /pdszp}. (5.29)
Q Q
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Hence, in order to stay in the solution space the new density built by mixing previous
densities has to be positive in every point. But this cannot be guaranteed when allowing
negative mixing coefficients to occur. In what follows we will therefore introduce a further
constraint ensuring the linear combination to be, additionally, convex.

Using the pure DIIS scheme for combining the densities in DF'T calculations is of course
possible, and sometimes done. In quantum chemistry this is then called Pulay mizing.
However note that this approach is known to sometimes suffer from slow convergence or
even fails to converge at all, cf. [39]. As well instabilities at convergence are known, cf.
[7]. For enhancing the behaviour of pure DIIS in this situation one usually goes back to
linear mixzing which is additionally applied to the optimised iterates. This however, brings
in the known problems for this scheme again.

Beside the linear mizing strategy, several other authors introduced convexity constraints
in their schemes. For example Cances [9] used a convexity constraint when combining
density matrices in his optimal damping strategy which essentially is a direct minimisation
method transformed such that it is adequate for solving the Kohn-Sham equations. An-
other example is the general descent method for the free energy of multicomponent systems
introduced by Gajewski and Griepentrog in [27]. There the minimisation is performed
under the general constraint of mass (or charge) conservation and the energy functional is
assumed to consist of a strong convex and a non-convex part that has a Lipschitz contin-
uous Fréchet derivative. The actual iterate is then (convex) mixed with the solution of a
constrained minimum problem for a partially linearised (energy) functional. Hence, Cances
as well as Gajewski/Griepentrog use an energy formulation to choose a search direction
together with a stepsize. In particular, Cances can guarantee a decreasing energy during
his iteration. For the DIIS version we introduced, this is not possible. Rather, we know
from density functional theory that the found self-consistent solution minimises the energy
but the convergence process need not produce a descending sequence of corresponding en-
ergies. Note, that the just described schemes both are more related to direct minimisation
methods whereas we want to use the convexity argument in order to get a generalised
density mixing scheme for a fixed point iteration that ensures the iterates lying inside the
solution space.

5.5.1 DIIS and Kohn-Sham

Concerning the Kohn-Sham system, the nonlinear rootfinding problem F'(z*) on which the
DIIS procedure is applied has the form

n*—=N(n")=0.
Due to this structure the memorised sets will be

Xt {ﬁo,...,ﬁi},
YN (f), ..., N(7;)}
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and the DIIS minimisation problem then reads
min{|| Y e — N(@))[2 © Y e =1}.
1=0 1=0

The necessity of the constraint ijo ¢, = 1 is here twofold, firstly it makes sure that the
total charge is conserved and secondly it prevents from finding the trivial zero solution.
To lower the computational cost of one iteration step we will use the variant indicated
by Algorithm 5.17. Meaning to use the standard main iteration I(x;) = z; — F'(x;) and
replacing F'(x;) by Y ;_, ¢ F(Z;). Thus, the next approximated iterate 7,4, is computed
by

Nip1 = N — ZQ(fll — N (7))

% 7

= chﬁl — ch(ﬁl - N(ﬁz)) = ZCZN(ﬁZ) :

=0 =0

In what follows we prefix a DIIS version that uses the main iteration I(x;) = z; — F(z;),
and thus taking two function evaluations per step, with the term ’original’. In comparison
to that a DIIS version using I(x;) = x; — Y,_, &;F(#;) (only one evaluation) is prefixed by
'KS’, standing for Kohn-Sham.

As already mentioned there is no indication, that the single evaluation versions perform
better or worse, compared to the original scheme. But anyway the computational costs for
a single step are only half as big.

N(n:)—n; .

Unfortunately, we cannot use the error term r; = W for the optimal value n;
K3

anymore in the convergence criterion in case of a "'KS’ version, since N (n;) is not computed

anymore. We will instead use the error at the approximation n;

WG -l
T Tl

Note, that the convergence behaviour will essentially be the same assuming the sequence of
iterates n; converges. This is due to the fact that min{|| > ,_, /(7 — N (7))|l2 = D _pa =
1} decreases monotonically.

5.5.2 Positivity Constraint: CDIIS

As mentioned before we have to introduce another constraint in order to stay in the solution
space K, (5.29), when applying the DIIS scheme for accelerating solution procedures for
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the Kohn-Sham system. Namely, this is the positivity constraint on the coefficients ¢;.
Recall that n is computed by the quantum mechanical expression

n() = 3 FE — €y ().

and thus the outcome of the evaluation A (n) is necessarily a positive function. And the
same is true for the sought solution n*. However, when performing a general DIIS step,
meaning to minimise

min{|| Y e — N(@))l2 © Y a =1} (5.30)

for the coefficient vector ¢, there is no guarantee that the components ¢; are positive. And
thus, by setting

(2
ni =Y aN(i), (5.31)
1=0

it is not sure that n(zr) is a positive value for every x € R3. Hence, the density produced
by the DIIS step might lie outside of the solution space K and thus be unphysical, which
might corrupt the computation. This is additionally fatal, since from analysis in Section 3
we cannot guarantee uniqueness of the solution in the first place. Thus, appearance of
unphysical solutions cannot be excluded.

To prevent the scheme from either finding those unphysical solutions or diverging, we have
to make sure the density given by (5.31) is positive in every point, i.e. lies in K. To this
end we replace the minimisation problem (5.30) by

)

min{|| Y e —N(@))l2 0 Y a=1;¢>0;1=0,...,i}. (5.32)
=0

=0

Hence, in every step we now have to solve a quadratic minimisation problem with equality
and inequality constraints. We do this, using the active set method from quadratic pro-
gramming, cf. [5, 32]. The main idea behind this iterative procedure is that at the solution
to (5.32) a certain set of inequality constraints is active, i.e. satisfied with equality. If
this set was known a priori, the problem reduces to an optimisation problem with equality
constraints only.

In our situation the method takes the following form of a quadratic programming problem
ming(c) = ¢’ Be, Ac=1, ¢ >0 (5.33)
with A = (1,...,1) € R™". The procedure updates the actual solution
c—>c=c+td

and the corresponding active set K — L, (cx = 0, ¢, = 0). The following steps are then
performed iteratively.
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i) Denote with Z the index set complementary to the active set K. Minimise g(c + d)
subject to the active constraints, i.e. dx = 0, Azdz = 0. The non-trivial solution
components of d are given as the solution of the system

(e E)(-(%) e

where A is the Lagrange multiplier belonging to the equality constraint and the
subscript denotes the corresponding submatrices.

ii) If dz = 0, check wether ¢ is optimal for the starting problem (5.33). This is the case,
if the gradient vector

prc = Qxzer + ARA

is non-negative. If not, remove the index k of the smallest component (which is
negative) from K and proceed with é = ¢, £ = K\k.

iii) If dz # 0, determine t € (0, 1] such that ¢ = ¢ + td is feasible, i.e.
t = min{1, —% for d; < 0} .
!
Add indeces j € T with ¢; = 0 to K and proceed with 1i).

As a feasible initial guess we use ¢ = (0,...,0,1). Meaning that we assume the actual
approximation z, to be the optimal solution in X".

Note, that the computational costs for finding the coefficient vector ¢ with the iterative
active set procedure are negligible, since the dimension of the (non-linear) Krylov subspace
span{n; —N(n;) : 1 =0,...,i} is much smaller than the dimension of the underlying real-
space problem.

Our algorithm for finding the fixed point of the Kohn-Sham system with only a single
evolution now reads

Algorithm 5.20 (KS-CDIIS Iteration).
e Given: ng
o set: X ={%};i:=0
e while 'not converged’ do
add N (z;) to Y : {N(ng), ..., N(ni-1)}
solve min{|| 31_, (g = N (R ))|l2 : Si_gci =1; ¢ >0} for ¢ = (cq, ..., ¢)
get M1 = ;o N ()

insert n;,.1 in X; i<+ i+4+1

e end
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Figure 22: comparing residual evolution of the original CDIIS scheme (Algorithm 5.9), the
KS CDIIS scheme (Algorithm 5.20) and the full Kerkhoven scheme (Algorithm 5.8).

In Figure 22 we see that the CDIIS versions usually perform equally good or better com-
pared to the (full) Kerkhoven scheme, when taking the number of steps as a basis of
performance rating only. The original CDIIS scheme, with two function evaluations per-
forms slightly better than the KS CDIIS version (only one evaluation), as we expected.
Thus we see that the Newton-type approach and the CDIIS mixing approach perform
equally good. This can be observed as well from the convergence rates in Table 8. For
comparison reasons the convergence rate of the (best) linear mizing strategy are given as
well, cf. Table 5. Note that all accelerated strategies perform better than the linear mizing

I
8 10
iteration steps

when regarding the number of iteration steps only.

18 20

Kerkhoven | original CDIIS | KS CDIIS | (best) lin. miz.
N =1 0.1387 0.2009 0.2106 0.2880
N =2 0.3187 0.2569 2699 0.4669
N =3 0.3417 0.2441 2501 0.5141

Table 8: Convergence rates gy for the full Kerkhoven (Algorithm 5.8), the original CDIIS
(Algorithm 5.9) and the KS CDIIS scheme (Algorithm 5.20) from Figure 22. For compar-
ison reasons the rates for the (best) linear mizing strategy (Algorithm 5.3) are given as

well.
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Kerkhoven | original CDIIS | KS CDIIS | (best) lin. miz.
N =1 52 46 26 30
N =2 70 58 30 48
N =3 64 o4 30 26

Table 9: Number of solved eigenvalue problems for the original CDIIS scheme (Algorithm
5.9), the KS CDIIS scheme (Algorithm 5.20) and the full Kerkhoven scheme (Algorithm
5.8) from Figure 22. The corresponding numbers for the (best) linear mizing scheme
(Algorithm 5.3) are given for comparison.

However, when regarding Table 9 we see that the number of function evaluations (i.e.
solved eigenvalue problems) is lowest for the KS CDIIS algorithm. Hence, even though the
original CDIIS scheme as well as the Kerkhoven scheme may need less iteration steps to
approach the solution, the KS CDIIS algorithm is more efficient, since it needs less time
to do so. Thus, among the three acceleration schemes, the KS CDIIS scheme is preferable.
Again the values for the linear mixing scheme are given. Note that under this aspect linear
mizing is not automatically the worst choice. It needs less evaluations than the Newton-
like acceleration and the original CDIIS scheme, making the better (in terms of iteration
steps) performance questionable. But the KS CDIIS outperforms all the other schemes
from this point of view. Thus, the fact that only one function evaluation is done during
one step of the KS CDIIS iteration is rather essential. But this is true as well for linear
mixing. Hence, there must be another reasoning for the good performance. And indeed,
the KS CDIIS scheme additionally benefits from the higher dimensional subspace mixing
ability. Both aspects together (single evaluation, mixing ability) clarify the strength of the
KS CDIIS scheme besides the guarantee of safely staying in the solution space.

Temperature | 4K TTK 300K
N=1 0.1984 | 0.1985 | 0.1795
N =2 0.3318 | 0.3025 | 0.2655
N =3 0.2896 | 0.2897 | 0.2560

Table 10: Convergence rates g for the KS DIIS scheme (Algorithm 5.20) with a history
of 5 for temperatures (4K, 77K and 300K) from Figure 23

The graphs in Figure 23 lastly show calculations for different temperatures using the KS
CDIIS scheme with a history of length 5. As we expected, the performance slightly increases
when staying away from the singular 0K problem. The corresponding convergence rates
can be found in Table 10. This shows that the KS CDIIS scheme seems to be quite
insensitive to changes in the temperature and even when approaching zero temperature,
the good performance is kept up.
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Figure 23: comparing residual evolution for the KS CDIIS scheme (Algorithm 5.20) with
a history of 5 at temperatures (4K, 77K and 300K).

5.5.3 History Length and Occupation Pattern

As was seen by the previous calculations, the KS DIIS scheme outperforms the linear mizing
scheme in the number of iteration steps and solved eigenvalue problems. However, there is
another important criterion for rating the performance of iteration schemes. Namely, this
is the storage used during the calculation. In KS CDIIS we have to keep track on every
iterate calculated so far, which of course makes it quite storage expensive. Especially, for
problems coming from discretised partial differential equations. Here, the linear mizing
clearly has an advantage since only two iterates are needed during the process. Thus, it
is worth analysing the behaviour of KS CDIIS when shortening the number of memorised
iterates.

Figure 24 shows a comparison of the KS CDIIS scheme (Algorithm 5.20) for different
lengths of histories. We see, that shortening the history of course has an effect, but it
seems that a lot of gainful informations are already contained in low dimensional subspaces.
This allows a shortening of the history without too much performance losings. However
shortening the history excessively clearly troubles the calculation, as can be seen from the
computation with a history of three. Nevertheless, we can say that a history of length 5
to 10, in any case, already produces satisfactorily results. See Table 11 for a summary of
the corresponding convergence rates.

As just mentioned, primal information might already be contained in low dimensional
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Figure 24: Comparing residual evolution of KS CDIIS scheme (Algorithm 5.20) with dif-
ferent lengths of history.

subspaces. When regarding a certain length of history, it is of interest which iterates exactly
span the actual subspace used to find the next approximation. In case of CDIIS this can
easily be analysed by looking at the occupation pattern. Meaning the segmentation of
zero- and nonzero-coefficients. Especially it is of interest, whether the newest information
coming from the last approximation is considered or not. If not, there is the danger of
getting stuck in a subspace by calculating the same solution over and over again.

To illustrate this, we have a look on Figure 25 showing calculations of the KS CDIIS
method for history length 5 and 20. There, we changed the convergence criterion down to
a demanded accuracy of 1071%. In this case numerical noise will get dominant and avoid
the termination of the process. Of course the problem now is artificially produced but
in a case when one is not sure about a trustable accuracy it is important to identify the

History 3 5) 8 10 15 20

N = 0.2168 | 0.1984 | 0.2129 | 0.2106 | 0.2106 | 0.2106
N =2 ]0.3553 | 0.3318 | 0.2978 | 0.2764 | 0.2699 | 0.2699
N =3 |0.3417 | 0.2896 | 0.2793 | 0.2487 | 0.2501 | 0.2501

Table 11: Convergence rates g o for the KS DIIS scheme (Algorithm 5.20) with different
lengths of history from Figure 24.

93



T T
History=20
History=5

7

rel.error
S
T

iterations steps

Figure 25: Comparing residual evolution of KS CDIIS scheme (Algorithm 5.20) for history
lengths 5 and 20 with reduced convergence criterion.

problem. Furthermore, for a complicated error landscape it is possible that the process
gets stuck in a similar way without touching noise effects.

We clearly can see the described effect. For the 20-evolution several plateau-like regions
occur, whereas there are none in the 5-case. Thus, the algorithm stops improving (or even
changing) the iterates for a certain number of steps. The reason can be understood when
looking on the occupation pattern shown in Figure 26. There we see the pattern of the
corresponding matrices C' = (¢; ;), where ¢; ; is the CDIIS-coeflicient of the j-th element
of X™ in the i-th iteration. Non-existing elements like ¢; o are set to zero, meaning C' to
be lower triangular. For the short history of 5 the main diagonal is almost completely
occupied, which means that the actual approximated solution n; has a contribution when
composing the optimal solution n;. Hence, new information are incorporated immediately.

For a 20-history there are long ranges with only zero elements on the main diagonal. Thus,
the information contained in the actual approximation are not used and instead the same
subspace is taken into account. Additionally, the effective dimension of the subspace used
to compose the optimal solution is small. Hence, it might happen that new information are
neglected as long as the subspace that is used to compose the optimal solution is contained
in the subspace spanned by X This results in the vertical pattern as we can see them in
the occupation patterns. Note however, that a zero-coefficient for the actual approximation
does not necessarily mean there is a problem in the process evolution. It could rather mean
that the non-linearity of the problem led to a false estimation of the localisation of the
solution and the procedure just reacts properly. Such situation can usually be seen in
the error evolution where they result in a worsening of the improvement by increasing the
error.

In Figure 25 and 26 we indicated no-progress regions with dashed lines. The vertical lines
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Figure 26: Occupation pattern for KS CDIIS scheme (Algorithm 5.20) with history lengths
5 and 20 from Figure 25.

in Figure 25 correspond to the horizontal lines in Figure 26.

Another important fact we can learn from this is the need for a finite history. If during
the calculation the process gets stuck in a subspace spanned by certain iterates, it can
only leave this impasse when deleting one of the basis vectors of the subspace. Thus, for
an infinite history the process would never recover. So for large histories, when detecting
vertical pattern formations, the process should properly react on this to break the subspace
lock. For short histories the situation is a little more relaxed. Since the subspace is small
anyway it will only take a few iterations, until one of the originator vectors expires.
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5.6 Summary

In this work about the Kohn-Sham system and its numerical treatment, we introduced a
high dimensional generalisation of the linear mizing scheme that leads to a considerably
acceleration of the iterative process.

Our starting point was the commonly used damping strategy linear mizing from density
functional theory. Even though usually successful, it often suffers from slow convergence
due to strong damping which results in lengthy time-consuming calculations.

To overcome this, a switch to acceleration methods is done such as Newton or Newton-like
procedures which are known for their good convergence behaviour. However, one iteration
of such acceleration methods usually is quite expensive since it requires computation of
information about the Jacobian. In essence we can say, a damping strategy is slow but
cheap and a Newton-acceleration is fast but expensive. With the developed CDIIS method
we were able to combined the good aspects from both worlds. Like linear mixing it re-
quires only a singel function evaluation, while the performance is comparable to a Newton
approach.

The basis of our CDIIS method is the well-known direct inversion in the iterative subspace
(DIIS) method from quantum chemistry. As in DIIS we try to find a linear combination
of iterates minimising a given error functional. However, the originally given version of
DIIS cannot safely be applied to our fixed point problem. This is due to its extrapolation
ability producing negative coefficients. For the Kohn-Sham density this means leaving
the solution space of positive functions. To overcome this, we introduced an additional
positivity constraint resulting in positive coefficients. Thus, the linear combination is
ensured to be a convex one. With this we guarantee the new approximation to stay in the
solution space.

The given formulation of CDIIS is embedded in a generalised formulation of DIIS-accelerated
iteration procedures. The variable components are the main iteration I and the error mea-

suring functional F. Both are essential for the nature of the procedure. The main iteration

describes how one tries to basically approach to the solution, while the error functional

decides about the weighting and judgement of the calculated iterates. Furthermore, this

formulation can be used to handle general nonlinear problems that can be written as a

fixed point problem.

By regarding the linear case, we pointed out that DIIS is equivalent to GMRES in this
situation. Thus, DIIS provides an alternative implementation of the GMRES method.
While disadvantageous in the linear case, the DIIS implementation of GMRES is directly
applicable to nonlinear problems as well. In this way we end up with a general version of
the GMRES method carried over to nonlinear problems.

Using the CDIIS scheme we successfully accelerated 3D-exciton calculations for a cylindri-
cal quantum dot structure as described in Section 4. The analytical results from Section 3
showed existence of solutions in a rather general setting that includes zero and finite tem-
perature configurations, cf. [15]. Furthermore, gainful properties like the analyticity of the
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particle density operator are included, cf. [43], e.g. analyticity was used in the develop-
ment of a steadily converging iteration scheme for the free energy of a multi-component
system, cf. [27]. The calculation performed for different temperatures showed additionally
robustness of the CDIIS method concerning fractional occupation of states.

5.7 Outlook

The results on the numerical behaviour of the presented CDIIS indicate a high potential for
accelerating self-consistent iterations on basis of the particle density in DFT. Several topics
are appropriate for a closer look towards a better understanding and further improvements
of the procedure.

Convergence Analysis

The numerical calculations carried out in the last section showed the promising performance
of the CDIIS method. In Section 5.4.3 we already mentioned the connection to secant
methods. Using this connection one might be able to analytically show convergence of
the produced iterates. A starting point of these considerations could be the exemplary
treatment of Broyden’s method ([8, 93]). The corresponding proofs of convergence for
Broyden can be found in [18, Ch. 8] and [29]. To use these results one should work on
the representation of the CDIIS method in form of a secant method comparable to the
Broyden update. One could then follow the lines of the proof presented in [29] to get
(local) linear convergence. Finally, similar considerations as carried out in the proof of
[18, Thm. 8.2.2] about Broyden’s method might lead to the application of the theorem
of Dennis-Moré (1974), cf. [18, Thm. 8.2.4] giving superlinear convergence. This possible
approach seems favourable since less is known about the Jacobian approximation defined
by the secant conditions for the DIIS method. Thus, one should try to benefit from results
about comparable looking method such as Broyden or other quasi-Newton methods like
BFGS.

Energy as Error Functional

The aim of the CDIIS procedure is the minimisation of a certain error functional F'(n) in
the convex hull of the previous iterates. The error functional used so far is considerably
affected by the fixed point formulation we developed it for. More precisely, it is given
by the actual residual that we tend to minimise. When going back to our main task,
we realize that instead we are actually interested in minimising the systems energy F(n),
which defines the ground (or equilibrium) state of the problem at hand. Thus, it can
be advantageous to include an energy dependence in the error functional and hence, the
weighting of the iterates. Meaning to still use the same main iteration / coming from the
fixed point procedure but changing the way of calculating the entries in the DIIS matrix.
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Unfortunately, unlike the residual the energy at the true solution is not zero. And thus
changing the minimisation task from F'(n;) = 0 to E(n;) = 0 will hardly work. Instead,
the energy error should be defined as F(n;) — E* = 0, where E* denotes the ground (or
equilibrium) state energy. But E* is not known and one should have to work with an
approximation to it. For example one could use E(n;) — E, with E the energy of the
actual approximation. With this change, we could connect the CDIIS method with energy
minimising procedures. However, it is at the one hand a priori not clear whether an energy
dependent weighting is more promising than an residual approach. At the other hand the
residual is cheap to calculate which is not clear for the energy. Putting together, it might
be advantageous to use energy information in the composition of the next approximation,
but this has to be done in an efficient way.
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A Scaling

In this section the rescaling of the Kohn-Sham system from SI- to atomic-units is shown
in detail. This is of special importance for finding appropriate coefficients for Poisson’s
equation and the local density approximation. To simplify the calculation we only consider
a single species, namely electrons.

SI-Units

The Kohn-Sham system in Sl-units reads

—VeeVe = q(D—n)
v+ Veff(”)} Vi = i
Vers(n) = Vot Vae(n) — qp(n)
n(z) = Y f(E&—Ep)(x)?
f(s) = ! > f(& —Er) = N = const.

B 1+e’“3%T

h? 1
——V
2 m,mg

where the following constants appear:

Planck’s constant h 1.0596 % 10734 J s
dielectric permittivity €y 8.854187 % 1072 Fm ™!

electron mass mo 9.1094 * 103 kg

elementary charge q 1.6022 % 10~°C

Atomic Units

This system will be transformed into atomic units. The basic units of which are:

electron mass mo =1
elementary charge qg=1
Planck’s constant h=1

dielectric permittivity &g = -

I

To begin with and in view of the scaling of the exchange-correlation potential we look at
the scaling to atomic units of the Schrodinger equation of the hydrogene atom.
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Hydrogen Atom

The Schrodinger equation for the hydrogen atom in SI-units is given by

[_h—QVQ 4

2myg 4meor

] Vi = &

Introducing the length scaling x = A x 2’ we get

[ gy 2 ]wzz&wz

" 2mo)2  dmeohr’

The scaling factor A is chosen, such that
h2 q2
77’L0)\2 B 471'80)\

(A1)

R4mey  (1.0545716... % 107342 . 47 - 8.854187 ... % 10712 L
_ _ ~5.2918...% 107",
moq? 2.0.109382... % 10731 - (1.6022. .. % 10-19)2

The quantity A is called Bohr’s radius and is denoted by ag. From this we find the Hartree
energy Fj, by use of (A.1), to be

= A

Ep, =4.3597... %107 %] = 27.2114eV .

Schrodinger’s Equation

The Schrodinger equation with effective potential is given by

h? 1
[——V V + Vo + Vie(n) — QSO(R)] Vi = Eths .
2 m,mgp
Scaling of the length and energy to ag and Ej, respectively, yields
1,1 Vo | Vae(n) g
FE N v u— v e —_ . = W5 A2
h[ Vo Vte T Y i (A-2)
ol - Lom)| e = Sy, (A.3)
2 my 0 e Eh(p ’ Eh v )

(A.4)

where the prime indicates the corresponding quantity in atomic units. Concerning the
electrostatic potential ¢ the unit is %. Thus we have

1 1
[—iv’—v’ VI V() go’(m} G = Elr

my

Note that the eigenfunctions of the Schrodinger operator are not affected.
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Poisson’s Equation

For Poisson’s equation we analogously get

€o q / /
——=Ve, Vo =—=(D" —
Ve Ve = (D — )
We thus have

gpa
o 0 OV&?TVQO:D/—TL,
q

A closer look on the factor % yields

2
€0ap  ko@o _ agmoq 1 ¢

q Arq  4Anh? AT E,

where we used the equations kg = 4meq (absolute dielectricity), ag = Z‘Jh? (Bohrs’s radius)

0q?
and E) = % (Hartree energy). Resulting in
0
Ve, iVE =D —n (A.5)
& —VEVY =D - (A.6)

Local Density Approximation

Finally, we treat the exchange-correlation term. In the local density approximation (LDA)

this term is given by
1/3
Vie(n) = — <§n> . (A.7)

™

The origin of this term is the homogeneous electron gas. And in particular, it belongs to
an equation of the form

[-V2+ V]9 =& (A.8)
instead of

{—v%v + v} b= E. (A.9)

To be able to use (A.7), we need to adapt the unit system, such that the equation appears
in the form (A.8). Analogue to the hydrogen atom, we get a length unit a;, and an energy
unit £

e, RAmey, &,
ab:ﬁ'mcﬁ om0
T 0 T
0 (A.10)
m, q m,
Eb == —2 . = —2 . Eh .
gz Admepay Ex
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With these units the term (A.7) would be correct and could then be used.

In our considerations heterostructures play an essential role. Meaning, the constants ¢, and
m,. vary throughout the domain. And thus, a different unit system has to be used in every
material which is not practical. Therefore we use the atomic unit-system throughout the
whole domain and adapt the exchange-correlation term by a corresponding correction fac-
tor, according to (A.10). To get this correction factor, we look at the following calculation
starting with the correct LDA term in the adapted units.

3 1/3 3 e 1/3 m,
s s m, Er

3\ /3 1/3
T m, &, € \ T

Thus the correction factor for the exchange-correlation term is given by Ei
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