Browse by Author Liesen, Jörg

Jump to: 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Showing results 4 to 22 of 22
PreviewIssue DateTitleAuthor(s)Editor(s)
2006_Liesen_et-al.pdf.jpg2006Computable convergence bounds for GMRESLiesen, Jörg-
LS_SUPG_Sep03.pdf.jpg15-Sep-2003Convergence Analysis of GMRES for the SUPG Discretized Convection-Diffusion Model ProblemLiesen, Jörg; Strakos, Zdenek-
2006_Liesen_et-al.pdf.jpg2006Convergence of GMRES for tridiagonal Toeplitz matricesLiesen, Jörg; Strakoš, Zdeněk-
2008_Liesen_et-al.pdf.jpg2008The Faber–Manteuffel theorem for linear operatorsFaber, Vance; Liesen, Jörg; Tichý, Petr-
2013_Liesen_et-al.pdf.jpg14-May-2013A framework for deflated and augmented Krylov subspace methodsGaul, André; Gutknecht, Martin H.; Liesen, Jörg; Nabben, Reinhard-
2006_Liesen_et-al.pdf.jpg2006GMRES convergence analysis for a convection-diffusion model problemLiesen, Jörg; Strakoš, Zdenek-
TiLi2006.pdf.jpg21-Dec-2006GMRES convergence and the polynomial numerical hull for a Jordan blockTichy, Petr; Liesen, Jörg-
2012_Liesen_et-al.pdf.jpg2012Least squares residuals and minimal residual methodsLiesen, Jörg; Rozlozník, Miroslav; Strakoš, Zdeněk-
LiTi2003TR.pdf.jpg1-Oct-2003A min-max problem on roots of unityLiesen, Jörg; Tichý, Petr-
Lie06.pdf.jpg1-Jun-2006A note on the eigenvalues of saddle point matricesLiesen, Jörg-
2009_Liesen_et-al.pdf.jpg30-Jul-2009On best approximations of polynomials in matrices in the matrix 2-normLiesen, Jörg; Tichý, Petr-
2010_Liesen_et-al.pdf.jpg24-Jun-2010On Chebyshev polynomials of matricesLiesen, Jörg; Faber, Vance; Tichý, Petr-
2008_Liesen_et-al.pdf.jpg5-Aug-2008On optimal short recurrences for generating orthogonal Krylov subspace basesLiesen, Jörg; Strakoš, Zdenek-
2006_Liesen_et-al.pdf.jpg2006Orthogonal Hessenberg reduction and orthogonal Krylov subspace basesLiesen, Jörg; Saylor, Paul E.-
2013_Liesen_et-al.pdf.jpg2013Properties of worst-case GMRESFaber, Vance; Liesen, Jörg; Tichý, Petr-
2007_Liesen_et-al.pdf.jpg2007When is the adjoint of a matrix a low degree rational function in the matrix?Liesen, Jörg-
Lie06b.pdf.jpg21-Nov-2006When is the adjoint of a matrix a low degree rational function in the matrix?Liesen, Jörg-
TiLi2005.pdf.jpg22-Aug-2005Worst-case and ideal GMRES for a Jordan blockTichý, Petr; Liesen, Jörg-
LT_WCGMRES_Sep03.pdf.jpg15-Sep-2003The worst-case GMRES for normal matricesLiesen, Jörg; Tichý, Petr-