Notice This is not the latest version of this item. The latest version can be found at: http://dx.doi.org/10.14279/depositonce-9001.3
Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-9001
Main Title: Discrete Yamabe problem for polyhedral surfaces
Author(s): Kourimska, Hana
Springborn, Boris
Type: Preprint
Language Code: en
Abstract: We introduce a new discretization of the Gaussian curvature on piecewise at surfaces. As the prime new feature the curvature is scaled by the factor 1/r2 upon scaling the metric globally with the factor r. We develop a variational principle to tackle the corresponding discrete uniformisation theorem – we show that each piecewise at surface is discrete conformally equivalent to one with constant discrete Gaussian curvature. This surface is in general not unique. We demonstrate uniqueness for particular cases and disprove it in general by providing explicit counterexamples. Special attention is paid to dealing with change of combinatorics.
URI: https://depositonce.tu-berlin.de/handle/11303/10010
http://dx.doi.org/10.14279/depositonce-9001
Issue Date: 13-Sep-2019
Date Available: 17-Sep-2019
DDC Class: 516 Geometrie
Subject(s): uniformization
polyhedral surfaces
Gaussian curvature
flat surface
License: http://rightsstatements.org/vocab/InC/1.0/
Appears in Collections:FG Geometrie und Visualisierung » Publications

Files in This Item:
File Description SizeFormat 
kourimska_springborn_2019.pdf289.49 kBAdobe PDFThumbnail
View/Open

Version History
Version Item Date Summary
3 10.14279/depositonce-9001.3 2019-10-14 17:36:47.411 Structure of the preprint improved, several typos removed.
1 10.14279/depositonce-9001 2019-09-17 09:20:26.0

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.