Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-9483
For citation please use:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBraun, Tanja-
dc.contributor.authorBecker, Karl-Friedrich-
dc.contributor.authorHoelck, Ole-
dc.contributor.authorVoges, Steve-
dc.contributor.authorKahle, Ruben-
dc.contributor.authorDreissigacker, Marc-
dc.contributor.authorSchneider-Ramelow, Martin-
dc.date.accessioned2019-12-23T12:01:30Z-
dc.date.available2019-12-23T12:01:30Z-
dc.date.issued2019-05-23-
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/10554-
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-9483-
dc.description.abstractFan-out wafer level packaging (FOWLP) is one of the latest packaging trends in microelectronics. Besides technology developments towards heterogeneous integration, including multiple die packaging, passive component integration in packages and redistribution layers or package-on-package approaches, larger substrate formats are also targeted. Manufacturing is currently done on a wafer level of up to 12”/300 mm and 330 mm respectively. For a higher productivity and, consequently, lower costs, larger form factors are introduced. Instead of following the wafer level roadmaps to 450 mm, panel level packaging (PLP) might be the next big step. Both technology approaches offer a lot of opportunities as high miniaturization and are well suited for heterogeneous integration. Hence, FOWLP and PLP are well suited for the packaging of a highly miniaturized energy harvester system consisting of a piezo-based harvester, a power management unit and a supercapacitor for energy storage. In this study, the FOWLP and PLP approaches have been chosen for an application-specific integrated circuit (ASIC) package development with integrated SMD (surface mount device) capacitors. The process developments and the successful overall proof of concept for the packaging approach have been done on a 200 mm wafer size. In a second step, the technology was scaled up to a 457 × 305 mm2 panel size using the same materials, equipment and process flow, demonstrating the low cost and large area capabilities of the approach.en
dc.description.sponsorshipEC/H2020/644378/EU/Smart MEMs Piezo based energy Harvesting with Integrated Supercapacitor and packaging/smart-MEMPHISen
dc.language.isoenen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subject.ddc620 Ingenieurwissenschaften und zugeordnete Tätigkeitende
dc.subject.otherfan-out wafer level packagingen
dc.subject.otherpanel level packagingen
dc.subject.otherheterogeneous integrationen
dc.titleFan-Out Wafer and Panel Level Packaging as Packaging Platform for Heterogeneous Integrationen
dc.typeArticleen
dc.date.updated2019-08-22T13:33:32Z-
tub.accessrights.dnbfreeen
tub.publisher.universityorinstitutionTechnische Universität Berlinen
dc.identifier.eissn2072-666X-
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.3390/mi10050342en
dcterms.bibliographicCitation.journaltitleMicromachinesen
dcterms.bibliographicCitation.originalpublisherplaceBaselen
dcterms.bibliographicCitation.volume10en
dcterms.bibliographicCitation.originalpublishernameMDPIen
dcterms.bibliographicCitation.issue5en
dcterms.bibliographicCitation.articlenumber342en
Appears in Collections:Forschungsschwerpunkt Technologien der Mikroperipherik » Publications

Files in This Item:
micromachines-10-00342.pdf
Format: Adobe PDF | Size: 5.09 MB
DownloadShow Preview
Thumbnail

Item Export Bar

This item is licensed under a Creative Commons License Creative Commons