Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-9627
For citation please use:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBounouar, Samir-
dc.contributor.authorHaye, Christpoh de la-
dc.contributor.authorStrauß, Max-
dc.contributor.authorSchnauber, Peter-
dc.contributor.authorThoma, Alexander-
dc.contributor.authorGschrey, Manuel-
dc.contributor.authorSchulze, Jan-Hindrik-
dc.contributor.authorStrittmatter, André-
dc.contributor.authorRodt, Sven-
dc.contributor.authorReitzenstein, Stephan-
dc.date.accessioned2020-02-17T12:05:05Z-
dc.date.available2020-02-17T12:05:05Z-
dc.date.issued2018-04-12-
dc.identifier.issn0003-6951-
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/10730-
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-9627-
dc.descriptionThis article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Appl. Phys. Lett. 112, 153107 (2018) and may be found at https://doi.org/10.1063/1.5020242.en
dc.description.abstractThe integration of entangled photon emitters in nanophotonic structures designed for the broadband enhancement of photon extraction is a major challenge for quantum information technologies. We study the potential of quantum dot (QD) microlenses as efficient emitters of maximally entangled photons. For this purpose, we perform quantum tomography measurements on InGaAs QDs integrated deterministically into microlenses. Even though the studied QDs show non-zero excitonic fine-structure splitting (FSS), polarization entanglement can be prepared with a fidelity close to unity. The quality of the measured entanglement is only dependent on the temporal resolution of the applied single-photon detectors compared to the period of the excitonic phase precession imposed by the FSS. Interestingly, entanglement is kept along the full excitonic wave-packet and is not affected by decoherence. Furthermore, coherent control of the upper biexcitonic state is demonstrated.en
dc.description.sponsorshipDFG, SFB 787, Halbleiter - Nanophotonik: Materialien, Modelle, Bauelementeen
dc.description.sponsorshipBMBF, 03V0630TIB, Entwicklung einer Halbleiterbasierten Einzelphotonenquelle für die Quanteninformationstechnologieen
dc.language.isoenen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.ddc530 Physikde
dc.subject.otherbiexcitonsen
dc.subject.otherintegrated opticsen
dc.subject.otherlight polarisationen
dc.subject.othermicrolensesen
dc.subject.othernanophotonicsen
dc.subject.otherquantum entanglementen
dc.subject.otherquantum opticsen
dc.subject.othersemiconductor quantum dotsen
dc.titleGeneration of maximally entangled states and coherent control in quantum dot microlensesen
dc.typeArticleen
tub.accessrights.dnbfreeen
tub.publisher.universityorinstitutionTechnische Universität Berlinen
dc.identifier.eissn1077-3118-
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.1063/1.5020242en
dcterms.bibliographicCitation.journaltitleApplied Physics Lettersen
dcterms.bibliographicCitation.originalpublisherplaceMelville, NYen
dcterms.bibliographicCitation.volume112en
dcterms.bibliographicCitation.originalpublishernameAmerican Institute of Physics (AIP)en
dcterms.bibliographicCitation.issue15en
dcterms.bibliographicCitation.articlenumber153107en
Appears in Collections:AG Optoelektronik und Quantenbauelemente » Publications

Files in This Item:
supplementary.pdf
Format: Adobe PDF | Size: 2.19 MB
DownloadShow Preview
Thumbnail

Item Export Bar

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.