Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-9668
For citation please use:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGeng, Caiyun-
dc.contributor.authorLi, Jilai-
dc.contributor.authorWeiske, Thomas-
dc.contributor.authorSchwarz, Helmut-
dc.date.accessioned2020-02-13T16:16:04Z-
dc.date.available2020-02-13T16:16:04Z-
dc.date.issued2019-08-13-
dc.identifier.issn0947-6539-
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/10773-
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-9668-
dc.description.abstractThe reactivity of the cationic metal‐carbon cluster FeC4+ towards methane has been studied experimentally using Fourier‐transform ion cyclotron resonance mass spectrometry and computationally by high‐level quantum chemical calculations. At room temperature, FeC4H+ is formed as the main ionic product, and the experimental findings are substantiated by labeling experiments. According to extensive quantum chemical calculations, the C−H bond activation step proceeds through a radical‐based hydrogen‐atom transfer (HAT) mechanism. This finding is quite unexpected because the initial spin density at the terminal carbon atom of FeC4+, which serves as the hydrogen acceptor site, is low. However, in the course of forming an encounter complex, an electron from the doubly occupied sp‐orbital of the terminal carbon atom of FeC4+ migrates to the singly occupied π*‐orbital; the latter is delocalized over the entire carbon chain. Thus, a highly localized spin density is generated in situ at the terminal carbon atom. Consequently, homolytic C−H bond activation occurs without the obligation to pay a considerable energy penalty that is usually required for HAT involving closed‐shell acceptor sites. The mechanistic insights provided by this combined experimental/computational study extend the understanding of methane activation by transition‐metal carbides and add a new facet to the dizzying mechanistic landscape of hydrogen‐atom transfer.en
dc.description.sponsorshipDFG, 53182490, EXC 314: Unifying Concepts in Catalysisen
dc.description.sponsorshipTU Berlin, Open-Access-Mittel - 2019en
dc.language.isoenen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subject.ddc540 Chemie und zugeordnete Wissenschaftende
dc.subject.othergas-phase reactionen
dc.subject.otherhydrogen-atom transferen
dc.subject.othermetal carbideen
dc.subject.othermethane activationen
dc.subject.otherquantum chemical calculationen
dc.titleA Reaction‐Induced Localization of Spin Density Enables Thermal C−H Bond Activation of Methane by Pristine FeC4+en
dc.typeArticleen
tub.accessrights.dnbfreeen
tub.publisher.universityorinstitutionTechnische Universität Berlinen
dc.identifier.eissn1521-3765-
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.1002/chem.201902572en
dcterms.bibliographicCitation.journaltitleChemistry – A European Journalen
dcterms.bibliographicCitation.originalpublisherplaceWeinheimen
dcterms.bibliographicCitation.volume25en
dcterms.bibliographicCitation.pageend12945en
dcterms.bibliographicCitation.pagestart12940en
dcterms.bibliographicCitation.originalpublishernameWileyen
dcterms.bibliographicCitation.issue56en
Appears in Collections:FG Physikalisch-Organische Chemie » Publications

Files in This Item:
chem201902572-sup-0001-misc_information.pdf

Supplementary

Format: Adobe PDF | Size: 2.34 MB
DownloadShow Preview
Thumbnail

Item Export Bar

This item is licensed under a Creative Commons License Creative Commons