Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-9684
For citation please use:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGili, Albert-
dc.contributor.authorBischoff, Benjamin-
dc.contributor.authorSimon, Ulla-
dc.contributor.authorSchmidt, Franziska-
dc.contributor.authorKober, Delf-
dc.contributor.authorGörke, Oliver-
dc.contributor.authorBekheet, Maged F.-
dc.contributor.authorGurlo, Aleksander-
dc.date.accessioned2020-02-17T10:57:54Z-
dc.date.available2020-02-17T10:57:54Z-
dc.date.issued2019-08-26-
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/10788-
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-9684-
dc.description.abstractDual-phase membranes for high-temperature carbon dioxide separation have emerged as promising technology to mitigate anthropogenic greenhouse gases emissions, especially as a pre- and post-combustion separation technique in coal burning power plants. To implement these membranes industrially, the carbon dioxide permeability must be improved. In this study, Ce0.8Sm0.2O2−δ (SDC) and Ce0.8Sm0.19Fe0.01O2−δ (FSDC) ceramic powders were used to form the skeleton in dual-phase membranes. The use of MgO as an environmentally friendly pore generator allows control over the membrane porosity and microstructure in order to compare the effect of the membrane’s ceramic phase. The ceramic powders and the resulting membranes were characterized using ICP-OES, HSM, gravimetric analysis, SEM/EDX, and XRD, and the carbon dioxide flux density was quantified using a high-temperature membrane permeation setup. The carbon dioxide permeability slightly increases with the addition of iron in the FSDC membranes compared to the SDC membranes mainly due to the reported scavenging effect of iron with the siliceous impurities, with an additional potential contribution of an increased crystallite size due to viscous flow sintering. The increased permeability of the FSDC system and the proper microstructure control by MgO can be further extended to optimize carbon dioxide permeability in this membrane system.en
dc.description.sponsorshipDFG, 414044773, Open Access Publizieren 2019 - 2020 / Technische Universität Berlinen
dc.language.isoenen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subject.ddc570 Biowissenschaften; Biologiede
dc.subject.othersamarium doped ceriaen
dc.subject.otherSDCen
dc.subject.otherFSDCen
dc.subject.otherCO2 separation membranesen
dc.subject.otherscavenging effect of ironen
dc.subject.otherpermeabilityen
dc.titleCeria-Based Dual-Phase Membranes for High-Temperature Carbon Dioxide Separation: Effect of Iron Doping and Pore Generation with MgO Templateen
dc.typeArticleen
tub.accessrights.dnbfreeen
tub.publisher.universityorinstitutionTechnische Universität Berlinen
dc.identifier.eissn2077-0375-
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.3390/membranes9090108en
dcterms.bibliographicCitation.journaltitleMembranesen
dcterms.bibliographicCitation.originalpublisherplaceBaselen
dcterms.bibliographicCitation.volume9en
dcterms.bibliographicCitation.originalpublishernameMDPIen
dcterms.bibliographicCitation.issue9en
dcterms.bibliographicCitation.articlenumber108en
Appears in Collections:FG Keramische Werkstoffe » Publications

Files in This Item:
membranes-09-00108-v2.pdf
Format: Adobe PDF | Size: 4.22 MB
DownloadShow Preview
Thumbnail

Item Export Bar

This item is licensed under a Creative Commons License Creative Commons