Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-9740
For citation please use:
Main Title: Stannites – a new promising class of durable electrocatalysts for efficient water oxidation
Author(s): Hausmann, Jan Niklas
Heppke, Eva Maria
Beltrán-Suito, Rodrigo
Schmidt, Johannes
Mühlbauer, Martin
Lerch, Martin
Menezes, Prashanth Wilfried
Drieß, Matthias
Type: Article
Language Code: en
Abstract: The oxygen evolution reaction (OER) through water oxidation is a key process for multiple energy storage technologies required for a sustainable energy economy such as the formation of the fuel hydrogen from water and electricity, or metal‐air batteries. Herein, we investigate the suitability of Cu2FeSnS4 for the OER and demonstrate its superiority over iron sulfide, iron (oxy)hydroxides and benchmark noble‐metal catalysts in alkaline media. Electrodeposited Cu2FeSnS4 yields the current densities of 10 and 1000 mA/cm2 at overpotentials of merely 228 and 330 mV, respectively. State‐of‐the‐art analytical methods are applied before and after electrocatalysis to uncover the fate of the Cu2FeSnS4 precatalyst under OER conditions and to deduce structure‐activity relationships. Cu2FeSnS4 is the first compound reported for OER among the broad class of stannite structure type materials containing multiple members with highly active earth‐abundant transition‐metals for OER.
URI: https://depositonce.tu-berlin.de/handle/11303/10845
http://dx.doi.org/10.14279/depositonce-9740
Issue Date: 9-Jan-2020
Date Available: 26-Feb-2020
DDC Class: 540 Chemie und zugeordnete Wissenschaften
Subject(s): oxygen evolution reaction
OER
stannite
water splitting
iron (Fe) oxyhydroxide
in situ transformation
Sponsor/Funder: DFG, 390540038, EXC 2008: Cluster of Excellence UniSysCat
TU Berlin, Open-Access-Mittel - 2019
License: https://creativecommons.org/licenses/by/4.0/
Journal Title: ChemCatChem
Publisher: Wiley
Publisher Place: Weinheim
Volume: 12
Issue: 4
Publisher DOI: 10.1002/cctc.201901705
Page Start: 1161
Page End: 1168
EISSN: 1867-3899
ISSN: 1867-3880
Appears in Collections:FG Metallorganische Chemie und Anorganische Materialien » Publications

Files in This Item:
Hausmann_et_al-2020.pdf
Format: Adobe PDF | Size: 797.77 kB
DownloadShow Preview
Thumbnail

Item Export Bar

This item is licensed under a Creative Commons License Creative Commons