Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-9780
For citation please use:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOmelchenko, Iryna-
dc.contributor.authorZakharova, Anna-
dc.contributor.authorHövel, Philipp-
dc.contributor.authorSiebert, Julien-
dc.contributor.authorSchöll, Eckehard-
dc.date.accessioned2020-03-06T15:59:18Z-
dc.date.available2020-03-06T15:59:18Z-
dc.date.issued2015-08-06-
dc.identifier.issn1054-1500-
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/10887-
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-9780-
dc.descriptionThis article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Chaos 25, 083104 (2015) and may be found at https://doi.org/10.1063/1.4927829.en
dc.description.abstractChimera states are complex spatio-temporal patterns in which domains of synchronous and asynchronous dynamics coexist in coupled systems of oscillators. We examine how the character of the individual elements influences chimera states by studying networks of nonlocally coupled Van der Pol oscillators. Varying the bifurcation parameter of the Van der Pol system, we can interpolate between regular sinusoidal and strongly nonlinear relaxation oscillations and demonstrate that more pronounced nonlinearity induces multi-chimera states with multiple incoherent domains. We show that the stability regimes for multi-chimera states and the mean phase velocity profiles of the oscillators change significantly as the nonlinearity becomes stronger. Furthermore, we reveal the influence of time delay on chimera patterns. The investigation of coupled oscillatory systems is an important research field bridging between nonlinear dynamics, network science, and statistical physics, with a variety of applications in physics, biology, and technology. The analysis and numerical simulation of large networks with complex coupling schemes continue to open up new unexpected dynamical scenarios. Chimera states are an example for such intriguing phenomena; they exhibit a hybrid structure combining coexisting domains of both coherent (synchronized) and incoherent (desynchronized) dynamics and were first reported for the well-known model of phase oscillators. In this paper, we investigate the influence of the local dynamics of the oscillators upon the resulting chimera patterns. Using the Van der Pol oscillator, which is a model allowing for a continuous transition between sinusoidal and strongly nonlinear relaxation oscillations by tuning a single parameter, we show that multi-chimera patterns with multiple incoherent domains are promoted by increasing the nonlinearity of the local oscillator dynamicsen
dc.description.sponsorshipDFG, 163436311, SFB 910: Kontrolle selbstorganisierender nichtlinearer Systeme: Theoretische Methoden und Anwendungskonzepteen
dc.description.sponsorshipBMBF, 01Q1001B, Bernstein Center for Computational Neuroscience Berlin (BCCN)en
dc.language.isoenen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.ddc530 Physikde
dc.subject.otherchimera statesen
dc.subject.othercoupling rangeen
dc.subject.otherVan der Pol oscillatorsen
dc.subject.otherchimera patternen
dc.subject.otherincoherent domainen
dc.titleNonlinearity of local dynamics promotes multi-chimerasen
dc.typeArticleen
tub.accessrights.dnbfreeen
tub.publisher.universityorinstitutionTechnische Universität Berlinen
dc.identifier.eissn1089-7682-
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.1063/1.4927829en
dcterms.bibliographicCitation.journaltitleChaos: An Interdisciplinary Journal of Nonlinear Scienceen
dcterms.bibliographicCitation.originalpublisherplaceMelville, NYen
dcterms.bibliographicCitation.volume25en
dcterms.bibliographicCitation.originalpublishernameAmerican Institute of Physics (AIP)en
dcterms.bibliographicCitation.issue8en
dcterms.bibliographicCitation.articlenumber083104en
Appears in Collections:FG Nichtlineare Dynamik und Kontrolle » Publications

Files in This Item:
schoell_etal_2015.pdf
Format: Adobe PDF | Size: 5.11 MB
DownloadShow Preview
Thumbnail

Item Export Bar

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.