Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-9821
For citation please use:
Main Title: Suppression of the quantum-confined Stark effect in polar nitride heterostructures
Author(s): Schlichting, Sarah
Hönig, Gerald Martin Otto
Müßener, Jan
Hille, Pascal
Grieb, Tim
Westerkamp, Steffen
Teubert, Jörg
Schörmann, Jörg
Wagner, Markus R.
Rosenauer, Andreas
Eickhoff, Martin
Hoffmann, Axel
Callsen, Gordon
Type: Article
Language Code: en
Abstract: Recently, we suggested an unconventional approach (the so-called Internal-Field-Guarded-Active-Region Design “IFGARD”) for the elimination of the quantum-confined Stark effect in polar semiconductor heterostructures. The IFGARD-based suppression of the Stark redshift on the order of electronvolt and spatial charge carrier separation is independent of the specific polar semiconductor material or the related growth procedures. In this work, we demonstrate by means of micro-photoluminescence techniques the successful tuning as well as the elimination of the quantum-confined Stark effect in strongly polar [000-1] wurtzite GaN/AlN nanodiscs as evidenced by a reduction of the exciton lifetimes by up to four orders of magnitude. Furthermore, the tapered geometry of the utilized nanowires (which embed the investigated IFGARD nanodiscs) facilitates the experimental differentiation between quantum confinement and Stark emission energy shifts. Due to the IFGARD, both effects become independently adaptable.
URI: https://depositonce.tu-berlin.de/handle/11303/10928
http://dx.doi.org/10.14279/depositonce-9821
Issue Date: 23-Aug-2018
Date Available: 16-Mar-2020
DDC Class: 530 Physik
Subject(s): internal-field-guarded-active-region design
Stark effect
semiconductor
electric field
guard layer
Sponsor/Funder: DFG, 43659573, SFB 787: Halbleiter - Nanophotonik: Materialien, Modelle, Bauelemente
License: https://creativecommons.org/licenses/by/4.0/
Journal Title: Communications Physics
Publisher: Springer Nature
Publisher Place: London
Volume: 1
Article Number: 48
Publisher DOI: 10.1038/s42005-018-0044-1
EISSN: 2399-3650
Appears in Collections:FG Optische Charakterisierung von Halbleitern » Publications

Files in This Item:
Wagner_etal_2018.pdf
Format: Adobe PDF | Size: 1.34 MB
DownloadShow Preview
Thumbnail

Item Export Bar

This item is licensed under a Creative Commons License Creative Commons