Please use this identifier to cite or link to this item:
http://dx.doi.org/10.14279/depositonce-9871
For citation please use:
For citation please use:
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Brandl, Stephanie | - |
dc.contributor.author | Höhne, Johannes | - |
dc.contributor.author | Müller, Klaus-Robert | - |
dc.contributor.author | Samek, Wojciech | - |
dc.date.accessioned | 2020-04-08T11:21:44Z | - |
dc.date.available | 2020-04-08T11:21:44Z | - |
dc.date.issued | 2015-07-02 | - |
dc.identifier.isbn | 978-1-4673-6389-1 | - |
dc.identifier.issn | 1948-3546 | - |
dc.identifier.uri | https://depositonce.tu-berlin.de/handle/11303/10980 | - |
dc.identifier.uri | http://dx.doi.org/10.14279/depositonce-9871 | - |
dc.description.abstract | Bringing Brain-Computer Interfaces (BCIs) into everyday life is a challenge because an out-of-lab environment implies the presence of variables that are largely beyond control of the user and the software application. This can severely corrupt signal quality as well as reliability of BCI control. Current BCI technology may fail in this application scenario because of the large amounts of noise, nonstationarity and movement artifacts. In this paper, we systematically investigate the performance of motor imagery BCI in a pseudo realistic environment. In our study 16 participants were asked to perform motor imagery tasks while dealing with different types of distractions such as vibratory stimulations or listening tasks. Our experiments demonstrate that standard BCI procedures are not robust to theses additional sources of noise, implicating that methods which work well in a lab environment, may perform poorly in realistic application scenarios. We discuss several promising research directions to tackle this important problem. | en |
dc.description.sponsorship | BMBF, 01GQ1115, Adaptive Gehirn-Computer-Schnittstellen (BCI) in nichtstationären Umgebungen | en |
dc.language.iso | en | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject.ddc | 006 Spezielle Computerverfahren | de |
dc.subject.other | brain-computer interface | en |
dc.subject.other | BCI | en |
dc.subject.other | out-of-lab environment | en |
dc.subject.other | motor imagery | en |
dc.subject.other | distraction | en |
dc.subject.other | performance evaluation | en |
dc.title | Bringing BCI into everyday life: Motor imagery in a pseudo realistic environment | en |
dc.type | Conference Object | en |
dc.relation.issupplementedby | 10.14279/depositonce-9827 | - |
tub.accessrights.dnb | free | en |
tub.publisher.universityorinstitution | Technische Universität Berlin | en |
dc.identifier.eissn | 1948-3554 | - |
dc.type.version | acceptedVersion | en |
dcterms.bibliographicCitation.doi | 10.1109/NER.2015.7146600 | en |
dcterms.bibliographicCitation.proceedingstitle | 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER) | en |
dcterms.bibliographicCitation.originalpublisherplace | New York, NY [u.a.] | en |
dcterms.bibliographicCitation.originalpublishername | Institute of Electrical and Electronics Engineers (IEEE) | en |
tub.affiliation | Fak. 4 Elektrotechnik und Informatik » Inst. Softwaretechnik und Theoretische Informatik » FG Maschinelles Lernen | de |
Appears in Collections: | Technische Universität Berlin » Publications |
Files in This Item:
Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.