Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-9888
For citation please use:
Main Title: Colloidal bimetallic platinum–ruthenium nanoparticles in ordered mesoporous carbon films as highly active electrocatalysts for the hydrogen evolution reaction
Author(s): Sachse, René
Bernsmeier, Denis
Schmack, Roman
Häusler, Ines
Hertwig, Andreas
Kraffert, Katrin
Nissen, Jörg
Krähnert, Ralph
Type: Article
Language Code: en
Abstract: Hydrogen features a very high specific energy density and is therefore a promising candidate for clean fuel from renewable resources. Water electrolysis can convert electrical energy into storable and transportable hydrogen gas. Under acidic conditions, platinum is the most active and stable monometallic catalyst for the hydrogen evolution reaction (HER). Yet, platinum is rare and needs to be used efficiently. Here, we report a synthesis concept for colloidal bimetallic platinum–ruthenium and rhodium–ruthenium nanoparticles (PtRuNP, RhRuNP) and their incorporation into ordered mesoporous carbon (OMC) films. The films exhibit high surface area, good electrical conductivity and well-dispersed nanoparticles inside the mesopores. The nanoparticles retain their size, crystallinity and composition during carbonization. In the hydrogen evolution reaction (HER), PtRuNP/OMC catalyst films show up to five times higher activity per Pt than Pt/C/Nafion® and PtRu/C/Nafion® reference catalysts.
URI: https://depositonce.tu-berlin.de/handle/11303/10996
http://dx.doi.org/10.14279/depositonce-9888
Issue Date: 4-Mar-2020
Date Available: 22-Apr-2020
DDC Class: 540 Chemie und zugeordnete Wissenschaften
Subject(s): hydrogen evolution reaction
HER
ordered mesoporous carbon
OMC
mesopores
Sponsor/Funder: TU Berlin, Open-Access-Mittel - 2020
European Metrology Research Programme (EMRP), 16ENG0, Hybrid metrology for thin films in energy applications (HyMET)
BMBF, 03VP05390, Nanostrukturierte Elektroden der nächsten Generation für eine energieeffiziente Produktion von Chlor - Next-Gen-Chlor
BMBF, 03EK3009, Design hocheffizienter Elektrolysekatalysatoren
License: https://creativecommons.org/licenses/by-nc/3.0/
Journal Title: Catalysis Science & Technology
Publisher: RSC Publishing
Publisher Place: London
Volume: 10
Publisher DOI: 10.1039/C9CY02285F
Page Start: 2057
Page End: 2068
EISSN: 2044-4761
ISSN: 2044-4753
Appears in Collections:FG Technische Chemie » Publications

Files in This Item:
c9cy02285f.pdf
Format: Adobe PDF | Size: 4.45 MB
DownloadShow Preview
Thumbnail

Item Export Bar

This item is licensed under a Creative Commons License Creative Commons