Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-9894
For citation please use:
Main Title: Generating single photons at gigahertz modulation-speed using electrically controlled quantum dot microlenses
Author(s): Schlehahn, Alexander
Schmidt, Ronny
Hopfmann, C.
Schulze, Jan-Hindrik
Strittmatter, André
Heindel, Tobias
Gantz, Liron
Schmidgall, Emma R.
Gershoni, David
Reitzenstein, Stephan
Type: Article
Language Code: en
Abstract: We report on the generation of single-photon pulse trains at a repetition rate of up to 1 GHz. We achieve this speed by modulating the external voltage applied on an electrically contacted quantum dot microlens, which is optically excited by a continuous-wave laser. By modulating the photoluminescence of the quantum dot microlens using a square-wave voltage, single-photon emission is triggered with a response time as short as (281 ± 19) ps, being 6 times faster than the radiative lifetime of (1.75 ± 0.02) ns. This large reduction in the characteristic emission time is enabled by a rapid capacitive gating of emission from the quantum dot, which is placed in the intrinsic region of a p-i-n-junction biased below the onset of electroluminescence. Here, since our circuit acts as a rectifying differentiator, the rising edge of the applied voltage pulses triggers the emission of single photons from the optically excited quantum dot. The non-classical nature of the photon pulse train generated at GHz-speed is proven by intensity autocorrelation measurements with g(2)(0) = 0.3 ± 0.1. Our results combine optical excitation with fast electrical gating and thus show promise for the generation of indistinguishable single photons at rates exceeding the limitations set by the intrinsic radiative lifetime.
URI: https://depositonce.tu-berlin.de/handle/11303/11002
http://dx.doi.org/10.14279/depositonce-9894
Issue Date: 11-Jan-2016
Date Available: 23-Apr-2020
DDC Class: 530 Physik
Subject(s): single photon
quantum dots
microlens
laser
microoptiocs
optical excitation
electrical gating
Sponsor/Funder: BMBF, 03V0630, Entwicklung einer Halbleiterbasierten Einzelphotonenquelle für die Quanteninformationstechnologie (QSOURCE)
DFG, 43659573, SFB 787: Halbleiter - Nanophotonik: Materialien, Modelle, Bauelemente
License: http://rightsstatements.org/vocab/InC/1.0/
Journal Title: Applied Physics Letters
Publisher: American Institute of Physics (AIP)
Publisher Place: Melville, NY
Volume: 108
Issue: 2
Article Number: 021104
Publisher DOI: 10.1063/1.4939658
EISSN: 1077-3118
ISSN: 0003-6951
Notes: This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Appl. Phys. Lett. 108, 021104 (2016) and may be found at https://doi.org/10.1063/1.4939658.
Appears in Collections:AG Optoelektronik und Quantenbauelemente » Publications

Files in This Item:
schlehahn_etal_2016.pdf
Format: Adobe PDF | Size: 1.05 MB
DownloadShow Preview
Thumbnail

Item Export Bar

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.