Please use this identifier to cite or link to this item:
For citation please use:
Main Title: Efficient Biocatalytic Synthesis of Dihalogenated Purine Nucleoside Analogues Applying Thermodynamic Calculations
Author(s): Yehia, Heba
Westarp, Sarah
Röhrs, Viola
Kaspar, Felix
Giessmann, Robert T.
Klare, Hendrik F. T.
Paulick, Katharina
Neubauer, Peter
Kurreck, Jens
Wagner, Anke
Type: Article
Language Code: en
Abstract: The enzymatic synthesis of nucleoside analogues has been shown to be a sustainable and efficient alternative to chemical synthesis routes. In this study, dihalogenated nucleoside analogues were produced by thermostable nucleoside phosphorylases in transglycosylation reactions using uridine or thymidine as sugar donors. Prior to the enzymatic process, ideal maximum product yields were calculated after the determination of equilibrium constants through monitoring the equilibrium conversion in analytical-scale reactions. Equilibrium constants for dihalogenated nucleosides were comparable to known purine nucleosides, ranging between 0.071 and 0.081. To achieve 90% product yield in the enzymatic process, an approximately five-fold excess of sugar donor was needed. Nucleoside analogues were purified by semi-preparative HPLC, and yields of purified product were approximately 50% for all target compounds. To evaluate the impact of halogen atoms in positions 2 and 6 on the antiproliferative activity in leukemic cell lines, the cytotoxic potential of dihalogenated nucleoside analogues was studied in the leukemic cell line HL-60. Interestingly, the inhibition of HL-60 cells with dihalogenated nucleoside analogues was substantially lower than with monohalogenated cladribine, which is known to show high antiproliferative activity. Taken together, we demonstrate that thermodynamic calculations and small-scale experiments can be used to produce nucleoside analogues with high yields and purity on larger scales. The procedure can be used for the generation of new libraries of nucleoside analogues for screening experiments or to replace the chemical synthesis routes of marketed nucleoside drugs by enzymatic processes.
Issue Date: 19-Feb-2020
Date Available: 28-Apr-2020
DDC Class: 540 Chemie und zugeordnete Wissenschaften
Subject(s): cytostatics
dihalogenated nucleoside analogue
yield prediction
thermostable nucleoside phosphorylase
thermodynamic calculations
leukemic cell line
Sponsor/Funder: DFG, 390540038, EXC 2008: UniSysCat
DFG, 414044773, Open Access Publizieren 2019 - 2020 / Technische Universität Berlin
Journal Title: Molecules
Publisher: MDPI
Publisher Place: Basel
Volume: 25
Issue: 4
Article Number: 934
Publisher DOI: 10.3390/molecules25040934
EISSN: 1420-3049
Appears in Collections:FG Bioverfahrenstechnik » Publications

Files in This Item:
Format: Adobe PDF | Size: 1.4 MB
DownloadShow Preview

Item Export Bar

This item is licensed under a Creative Commons License Creative Commons