Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-9937
For citation please use:
Main Title: Wake Structures and Surface Patterns of the DrivAer Notchback Car Model under Side Wind Conditions
Author(s): Wieser, Dirk
Nayeri, Christian Navid
Paschereit, Christian Oliver
Type: Article
Language Code: en
Abstract: The flow field topology of passenger cars considerably changes under side wind conditions. This changes the surface pressure, aerodynamic force, and drag and performance of a vehicle. In this study, the flow field of a generic passenger vehicle is investigated based on three different side wind angles. The study aimed to identify vortical structures causing changes in the rear pressure distribution. The notchback section of the DrivAer model is evaluated on a scale of 1:4. The wind tunnel tests are conducted in a closed section with a splitter plate at a Reynolds number of 3 million. The side wind angles are 0∘ , 5∘ , and 10∘ . The three-dimensional and time-averaged flow field downstream direction of the model is captured by a stereoscopic particle image velocimetry system performed at several measurement planes. These flow field data are complemented by surface flow visualizations performed on the entire model. The combined approaches provide a comprehensive insight into the flow field at the frontal and side wind inflows. The flow without side wind is almost symmetrical. Longitudinal vortices are evident along the downstream direction of the A-pillar, the C-pillars, the middle part of the rear window, and the base surface. In addition, there is a ring vortex downstream of the vehicle base. The side wind completely changes the flow field. The asymmetric topology is dominated by the windward C-pillar vortex, the leeward A-pillar vortex, and other base vortices. Based on the location of the vortices and the pressure distributions measured in earlier studies, it can be concluded that the vortices identified in the wake are responsible for the local minima of pressure, increasing the vehicle drag.
URI: https://depositonce.tu-berlin.de/handle/11303/11049
http://dx.doi.org/10.14279/depositonce-9937
Issue Date: 9-Jan-2020
Date Available: 29-Apr-2020
DDC Class: 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten
Subject(s): DrivAer
aerodynamics
wind tunnel
vehicle
flow visualization
PIV
wake structures
side wind
crosswind
License: https://creativecommons.org/licenses/by/4.0/
Journal Title: Energies
Publisher: MDPI
Publisher Place: Basel
Volume: 13
Issue: 2
Article Number: 320
Publisher DOI: 10.3390/en13020320
EISSN: 1996-1073
Appears in Collections:FG Experimentelle Strömungsmechanik » Publications

Files in This Item:
energies-13-00320.pdf
Format: Adobe PDF | Size: 13.62 MB
DownloadShow Preview
Thumbnail

Item Export Bar

This item is licensed under a Creative Commons License Creative Commons