Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-9959
For citation please use:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGraczykowski, Bartlomiej-
dc.contributor.authorSachat, Alexandros el-
dc.contributor.authorReparaz, Juan Sebastián-
dc.contributor.authorSledzinska, Marianna-
dc.contributor.authorWagner, Markus R.-
dc.contributor.authorChávez-Ángel, Emigdio-
dc.contributor.authorWu, Y.-
dc.contributor.authorVolz, Sebastian-
dc.contributor.authorAlzina, Francesc-
dc.contributor.authorSotomayor Torres, Clivia M.-
dc.date.accessioned2020-05-04T08:16:29Z-
dc.date.available2020-05-04T08:16:29Z-
dc.date.issued2017-09-04-
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/11071-
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-9959-
dc.description.abstractHeat conduction in silicon can be effectively engineered by means of sub-micrometre porous thin free-standing membranes. Tunable thermal properties make these structures good candidates for integrated heat management units such as waste heat recovery, rectification or efficient heat dissipation. However, possible applications require detailed thermal characterisation at high temperatures which, up to now, has been an experimental challenge. In this work we use the contactless two-laser Raman thermometry to study heat dissipation in periodic porous membranes at high temperatures via lattice conduction and air-mediated losses. We find the reduction of the thermal conductivity and its temperature dependence closely correlated with the structure feature size. On the basis of two-phonon Raman spectra, we attribute this behaviour to diffuse (incoherent) phonon-boundary scattering. Furthermore, we investigate and quantify the heat dissipation via natural air-mediated cooling, which can be tuned by engineering the porosity.en
dc.description.sponsorshipEC/FP7/309150/EU/Membrane-based phononic engineering for energy harvesting/MERGINGen
dc.description.sponsorshipEC/FP7/604668/EU/QUANTItative scanning probe microscopy techniques for HEAT transfer management in nanomaterials and nanodevices/QUANTIHEATen
dc.language.isoenen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subject.ddc530 Physikde
dc.subject.othernanoscale materialen
dc.subject.otherthermodynamicen
dc.subject.otherheat dissipationen
dc.subject.otherthermal conductivityen
dc.subject.otherhigh temperaturesen
dc.titleThermal conductivity and air-mediated losses in periodic porous silicon membranes at high temperaturesen
dc.typeArticleen
tub.accessrights.dnbfreeen
tub.publisher.universityorinstitutionTechnische Universität Berlinen
dc.identifier.eissn2041-1723-
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.1038/s41467-017-00115-4en
dcterms.bibliographicCitation.journaltitleNature Communicationsen
dcterms.bibliographicCitation.originalpublisherplaceLondonen
dcterms.bibliographicCitation.volume8en
dcterms.bibliographicCitation.originalpublishernameSpringer Natureen
dcterms.bibliographicCitation.articlenumber415en
Appears in Collections:FG Optische Charakterisierung von Halbleitern » Publications

Files in This Item:
s41467-017-00115-4.pdf
Format: Adobe PDF | Size: 1.41 MB
DownloadShow Preview
Thumbnail

Item Export Bar

This item is licensed under a Creative Commons License Creative Commons