Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-9974
For citation please use:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHeihsel, Michael-
dc.contributor.authorLenzen, Manfred-
dc.contributor.authorMalik, Arunima-
dc.contributor.authorGeschke, Arne-
dc.date.accessioned2020-05-13T15:00:58Z-
dc.date.available2020-05-13T15:00:58Z-
dc.date.issued2018-12-31-
dc.identifier.issn0011-9164-
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/11086-
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-9974-
dc.description.abstractThis study examines greenhouse gas emissions for 2005–2015 from seawater desalination in Australia, using conventional energies. We developed a tailor-made multi-regional input-output-model. We complemented macroeconomic top-down data with plant-specific desalination data of the largest 20 desalination plants in Australia. The analysed capacity cumulates to 95% of Australia's overall seawater desalination capacity. We considered the construction and the operation of desalination plants. We measure not only direct effects, but also indirect effects throughout the entire value chain. Our results show the following: We identify the state of Victoria with the highest emissions due to capital and operational expenditures (capex and opex). The contribution of the upstream value chain to total greenhouse gas emissions increases for capex and decreases for opex. For capex, the construction of intake and outfall is the driving factor for carbon emissions. For opex, electricity consumption is the decisive input factor. Both in construction and operation, we identify the critical role of the electricity sector for carbon emissions throughout the supply chain effects. The sector contributes 69% during the zenith of the construction phase and 96% during the operating phase to the entire emissions. We estimate the total emissions for 2015 at 1193 kt CO2e.en
dc.language.isoenen
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/en
dc.subject.ddc690 Hausbau, Bauhandwerkde
dc.subject.otherinput-output analysisen
dc.subject.otherlife cycle analysisen
dc.subject.othermulti-regionalen
dc.subject.othergreenhouse gasesen
dc.subject.othersustainabilityen
dc.titleThe carbon footprint of desalination: An input-output analysis of seawater reverse osmosis desalination in Australia for 2005–2015en
dc.typeArticleen
tub.accessrights.dnbfreeen
tub.publisher.universityorinstitutionTechnische Universität Berlinen
dc.identifier.eissn1873-4464-
dc.type.versionacceptedVersionen
dcterms.bibliographicCitation.doi10.1016/j.desal.2018.12.008en
dcterms.bibliographicCitation.journaltitleDesalinationen
dcterms.bibliographicCitation.originalpublisherplaceAmsterdam [u.a.]en
dcterms.bibliographicCitation.volume454en
dcterms.bibliographicCitation.pageend81en
dcterms.bibliographicCitation.pagestart71en
dcterms.bibliographicCitation.originalpublishernameElsevieren
Appears in Collections:FG Energieverfahrenstechnik und Umwandlungstechniken regenerativer Energien » Publications

Files in This Item:
heihsel_etal_2018.pdf

Accepted manuscript

Format: Adobe PDF | Size: 5.25 MB
DownloadShow Preview
Thumbnail

Item Export Bar

This item is licensed under a Creative Commons License Creative Commons