Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-9986
For citation please use:
Main Title: Mutual coupling and synchronization of optically coupled quantum-dot micropillar lasers at ultra-low light levels
Author(s): Kreinberg, Sören
Porte, Xavier
Schicke, David
Lingnau, Benjamin
Schneider, Christian
Höfling, Sven
Kanter, Ido
Lüdge, Kathy
Reitzenstein, Stephan
Type: Article
Language Code: en
Abstract: Synchronization of coupled oscillators at the transition between classical physics and quantum physics has become an emerging research topic at the crossroads of nonlinear dynamics and nanophotonics. We study this unexplored field by using quantum dot microlasers as optical oscillators. Operating in the regime of cavity quantum electrodynamics (cQED) with an intracavity photon number on the order of 10 and output powers in the 100 nW range, these devices have high β-factors associated with enhanced spontaneous emission noise. We identify synchronization of mutually coupled microlasers via frequency locking associated with a sub-gigahertz locking range. A theoretical analysis of the coupling behavior reveals striking differences from optical synchronization in the classical domain with negligible spontaneous emission noise. Beyond that, additional self-feedback leads to zero-lag synchronization of coupled microlasers at ultra-low light levels. Our work has high potential to pave the way for future experiments in the quantum regime of synchronization.
URI: https://depositonce.tu-berlin.de/handle/11303/11096
http://dx.doi.org/10.14279/depositonce-9986
Issue Date: 4-Apr-2019
Date Available: 11-May-2020
DDC Class: 530 Physik
Subject(s): nanoscale devices
quantum optics
semiconductor lasers
quantum electrodynamics
micropillar lasers
Sponsor/Funder: EC/FP7/615613/EU/External Quantum Control of Photonic Semiconductor Nanostructures/EXQUISITE
DFG, 43659573, SFB 787: Halbleiter - Nanophotonik: Materialien, Modelle, Bauelemente
DFG, 87159868, GRK 1558: Kollektive Dynamik im Nichtgleichgewicht: in kondensierter Materie und biologischen Systemen
License: https://creativecommons.org/licenses/by/4.0/
Journal Title: Nature Communications
Publisher: Springer Nature
Publisher Place: London
Volume: 10
Article Number: 1539
Publisher DOI: 10.1038/s41467-019-09559-2
EISSN: 2041-1723
Appears in Collections:AG Optoelektronik und Quantenbauelemente » Publications

Files in This Item:
reitzenstein_etal_2019.pdf
Format: Adobe PDF | Size: 1.69 MB
DownloadShow Preview
Thumbnail

Item Export Bar

This item is licensed under a Creative Commons License Creative Commons