Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-9987
For citation please use:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSchlehahn, Alexander-
dc.contributor.authorFischbach, Sarah-
dc.contributor.authorSchmidt, Ronny-
dc.contributor.authorKaganskiy, Arsenty-
dc.contributor.authorStrittmatter, André-
dc.contributor.authorRodt, Sven-
dc.contributor.authorHeindel, Tobias-
dc.contributor.authorReitzenstein, Stephan-
dc.date.accessioned2020-05-11T08:29:46Z-
dc.date.available2020-05-11T08:29:46Z-
dc.date.issued2018-01-22-
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/11097-
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-9987-
dc.description.abstractIn this work, we present a stand-alone and fiber-coupled quantum-light source. The plug-and-play device is based on an optically driven quantum dot delivering single photons via an optical fiber. The quantum dot is deterministically integrated in a monolithic microlens which is precisely coupled to the core of an optical fiber via active optical alignment and epoxide adhesive bonding. The rigidly coupled fiber-emitter assembly is integrated in a compact Stirling cryocooler with a base temperature of 35 K. We benchmark our practical quantum device via photon auto-correlation measurements revealing g(2)(0) = 0.07 ± 0.05 under continuous-wave excitation and we demonstrate triggered non-classical light at a repetition rate of 80 MHz. The long-term stability of our quantum light source is evaluated by endurance tests showing that the fiber-coupled quantum dot emission is stable within 4% over several successive cool-down/warm-up cycles. Additionally, we demonstrate non-classical photon emission for a user-intervention-free 100-hour test run and stable single-photon count rates up to 11.7 kHz with a standard deviation of 4%.en
dc.description.sponsorshipDFG, 43659573, SFB 787: Halbleiter - Nanophotonik: Materialien, Modelle, Bauelementeen
dc.description.sponsorshipBMBF, 03V0630, Entwicklung einer Halbleiterbasierten Einzelphotonenquelle für die Quanteninformationstechnologieen
dc.description.sponsorshipEC/FP7/615613/EU/External Quantum Control of Photonic Semiconductor Nanostructures/EXQUISITEen
dc.language.isoenen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subject.ddc530 Physikde
dc.subject.otherquantum dotsen
dc.subject.otherquantum effectsen
dc.subject.otherquantum-light sourceen
dc.subject.othersingle-photon sourceen
dc.titleA stand-alone fiber-coupled single-photon sourceen
dc.typeArticleen
tub.accessrights.dnbfreeen
tub.publisher.universityorinstitutionTechnische Universität Berlinen
dc.identifier.eissn2045-2322-
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.1038/s41598-017-19049-4en
dcterms.bibliographicCitation.journaltitleScientific Reportsen
dcterms.bibliographicCitation.originalpublisherplaceLondonen
dcterms.bibliographicCitation.volume8en
dcterms.bibliographicCitation.originalpublishernameSpringer Natureen
dcterms.bibliographicCitation.articlenumber1340en
tub.affiliationFak. 2 Mathematik und Naturwissenschaften » Inst. Festkörperphysik » AG Optoelektronik und Quantenbauelementede
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
reitzenstein_etal_2018.pdf
Format: Adobe PDF | Size: 2.36 MB
DownloadShow Preview
Thumbnail

Item Export Bar

This item is licensed under a Creative Commons License Creative Commons