Please use this identifier to cite or link to this item:
For citation please use:
Main Title: Indirect excitation of ultrafast demagnetization
Author(s): Vodungbo, Boris
Tudu, Bharati
Perron, Jonathan
Delaunay, Renaud
Müller, Leonard
Berntsen, Magnus H.
Grübel, Gerhard
Malinowski, Grégory
Weier, Christian
Gautier, Julien
Lambert, Guillaume
Zeitoun, Philippe
Gutt, Christian
Jal, Emmanuelle
Reid, Alexander H.
Granitzka, Patrick W.
Jaouen, Nicolas
Dakovski, Georgi L.
Moeller, Stefan
Minitti, Michael P.
Mitra, Ankush
Carron, Sebastian
Pfau, Bastian
Korff Schmising, Clemens von
Schneider, Michael
Eisebitt, Stefan
Lüning, Jan
Type: Article
Language Code: en
Abstract: Does the excitation of ultrafast magnetization require direct interaction between the photons of the optical pump pulse and the magnetic layer? Here, we demonstrate unambiguously that this is not the case. For this we have studied the magnetization dynamics of a ferromagnetic cobalt/palladium multilayer capped by an IR-opaque aluminum layer. Upon excitation with an intense femtosecond-short IR laser pulse, the film exhibits the classical ultrafast demagnetization phenomenon although only a negligible number of IR photons penetrate the aluminum layer. In comparison with an uncapped cobalt/palladium reference film, the initial demagnetization of the capped film occurs with a delayed onset and at a slower rate. Both observations are qualitatively in line with energy transport from the aluminum layer into the underlying magnetic film by the excited, hot electrons of the aluminum film. Our data thus confirm recent theoretical predictions.
Issue Date: 2016
Date Available: 20-May-2020
DDC Class: 530 Physik
Subject(s): excitation
magnetization dynamics
ferromagnetic multilayer
Sponsor/Funder: BMBF, 05K10KTB, Verbundprojekt: FSP 301 - FLASH: Nanoskopische Systeme. Teilprojekt 1.1: Universelle Experimentierkammer für Streuexperimente mit kohärenten Femtosekunden-Röntgenpulsen Multi Purpose Coherent Scattering Chamber for FLASH and XFEL 'MPscatt'
BMBF, 05K13KT4, Verbundprojekt FSP 302 - Freie-Elektronen-Laser: Nanoskopische Systeme. Teilprojekt 1: Split-and-Delay Instrument für die European XFEL Beamline Materials Imaging and Dynamics
DFG, 170620586, SFB 925: Licht-induzierte Dynamik und Kontrolle korrelierter Quantensysteme
Journal Title: Scientific Reports
Publisher: Springer Nature
Publisher Place: London
Volume: 6
Issue: 1
Article Number: 18970
Publisher DOI: 10.1038/srep18970
EISSN: 2045-2322
Appears in Collections:FG Röntgenoptik und Nanometer-Optik » Publications

Files in This Item:
Format: Adobe PDF | Size: 1.1 MB
DownloadShow Preview

Item Export Bar

This item is licensed under a Creative Commons License Creative Commons