Beam quality improvement of high-power semiconductor lasers using laterally inhomogeneous waveguides

Miah, Mohammad Jarez; Strohmaier, S.; Urban, G.; Bimberg, Dieter

Inst. Festkörperphysik

High-brightness vertical broad-area edge-emitting (HiBBEE) semiconductor lasers in the 1060 nm wavelength range with excellent beam quality in both lateral and vertical directions are presented. An approach to modify the thresholds of the transverse lateral modes of ridge-waveguide (RW) lasers is investigated. It has been experimentally shown that inhomogeneities in both sides of the ridges increase optical losses of the higher-order lateral modes as compared to the fundamental mode. The resulting enhancement in the contrast of the optical losses favors the emission of the fundamental mode and improves the beam quality. Reference RW HiBBEE lasers with a 15 μm wide conventional ridge and a 2.0 mm long cavity provide laterally multi-lateral mode emission which is typical for RW lasers with such wide and homogeneous ridges. On the other hand, RW HiBBEE lasers with triangular-shaped corrugations in both sides of 15 μm wide ridges provide single-lateral mode emission across a wide current range and improve the lateral M2 factor by more than a factor of 2 in the investigated current range. The corrugated RW HiBBEE lasers provide an almost 2 times higher brightness than the reference RW lasers.