Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-857
Main Title: On the Einstein-Vlasov system with cosmological constant
Author(s): Tchapnda Njabo, Sophonie Blaise
Advisor(s): Noutchegueme, Norbert
Granting Institution: Technische Universität Berlin, Fakultät II - Mathematik und Naturwissenschaften
Type: Doctoral Thesis
Language: English
Language Code: en
Abstract: Das Einstein-Vlasov-System beschreibt die Zeitentwicklung stossfreier Materie im Rahmen der Allgemeinen Relativitätstheorie. Ziel dieser Arbeit ist es, möglichst viele Informationen zu bekommen über globale Lösungen des Anfangswertproblems für das Einstein-Vlasov-System mit kosmologischer Konstante Lambda und sphärischer, ebener oder hyperbolischer Symmetrie, geschrieben in Flächenkoordinaten. Die vorliegende Untersuchung befasst sich mit Raumzeiten, die eine kompakte Cauchy-Hyperfläche besitzen, und in diesem Fall werden Daten auf einer kompakten dreidimensionalen Mannigfaltigkeit gegeben. Die Ergebnisse von G. Rein über lokale Existenz und Fortsetzungskriterien für Raumzeiten mit Lambda=0 werden auf den Fall mit Lambda ungleich Null erweitert. Es wird ausserdem die Lösbarkeit der Zwangsbedingungen bewiesen, die durch die Anfangsdaten erfüllt werden müssen. Es wird gezeigt dass im Fall Lambda kleiner Null keine in der Zukunft globale Lösung existieren kann, so dass die Untersuchung in der expandierenden Richtung sich auf den Fall Lambda grösser Null beschränkt. Mit der Annahme ebener (k=0) oder hyperbolischer (k=-1) Symmetrie und Lambda grösser Null, wird gezeigt, dass der Flächenradius in der Zukunft gegen unendlich strebt so dass globale Existenz in der Zukunft gilt, dass die Raumzeiten in der Zukunft geodätisch vollständig sind, und dass die Expansion zu späten Zeiten isotrop und exponentiell wird. Dadurch wird in dieser Klasse von Raumzeiten eine Form einer Aussage bewiesen, die als "cosmic no hair theorem" bezeichnet wird. Entsprechende Ergebnisse werden auch im sphärisch symmetrischen Fall (k=1) bewiesen, vorausgesetzt dass die Anfangszeit hinreichend gross ist. Ausserdem wird das Verhalten des Energie-Impuls-Tensors zu späten Zeiten analysiert. Zusätzlich wird globale Existenz in der Vergangenheit bewiesen für generische Anfangsdaten wenn Lambda kleiner gleich Null und k grösser gleich Null. Ausserdem werden einige bekannte Ergebnisse verallgemeinert in dem die Existenz bis t=0 für kleine Daten wenn Lambda kleiner Null und k=-1 oder wenn Lambda grösser Null bewiesen wird. In diesem Fall wird bewiesen dass eine Krümmungsinvariante, der Kretschmann-Skalar, für t gegen Null explodiert, so dass es eine Singularität bei t=0 gibt. Anschliessend wird die Natur dieser Anfangssingularität analysiert und es wird gezeigt, dass das asymptotische Verhalten dem einer Kasner-Lösung ähnelt.
The Einstein-Vlasov system governs the time evolution of a self-gravitating collisionless gas in the context of general relativity. The aim of this thesis is to obtain as much information as possible about global solutions of the initial value problem for the Einstein-Vlasov system with cosmological constant and spherical, plane or hyperbolic symmetry, written in areal coordinates. Our investigation is concerned with the spacetimes possessing a compact Cauchy hypersurface, in this case the data are given on a compact 3-manifold. The results on the local existence and continuation criteria obtained by G. Rein for the Einstein-Vlasov system with vanishing cosmological constant are extended to the case with a non-zero cosmological constant. We also prove the solvability of the constraint problem on the initial data. We show that there is no global solution in the future when the cosmological constant is negative so that the study in the expanding direction deals only with the positive cosmological constant case. Under the assumption of plane (k=0) or hyperbolic (k=-1) symmetry and that the cosmological constant Lambda is positive we prove that the area radius goes to infinity and so global existence in the future time direction is shown, the spacetimes are future geodesically complete, and the expansion becomes isotropic and exponential at late times. This proves a form of the so-called cosmic no-hair theorem in this class of spacetimes. These results are also proved in the spherically symmetric case (k=1) provided that the initial time is sufficiently large. Furthermore we analyze the behaviour of the energy-momentum tensor at late times. In addition, in the past time direction we prove global existence for generic data if Lambda is non-positive and k is non-negative. Besides this we generalize some known results in the literature by proving existence up to t=0 for small data in the cases Lambda negative, k=-1 and Lambda positive, by proving that the curvature invariant called Kretschmann scalar blows up as t tends to zero so that there is a singularity at t=0. Furthermore we analyze the nature of this initial singularity and also show that the asymptotics is Kasner-like at early times.
URI: urn:nbn:de:kobv:83-opus-7583
http://depositonce.tu-berlin.de/handle/11303/1154
http://dx.doi.org/10.14279/depositonce-857
Exam Date: 30-Jun-2004
Issue Date: 2-Sep-2004
Date Available: 2-Sep-2004
DDC Class: 510 Mathematik
Subject(s): Vlasov-Gleichung
Kosmologie
globale Existenz
Vlasov equation
cosmology
global existence
Usage rights: Terms of German Copyright Law
Appears in Collections:Technische Universität Berlin » Fakultäten & Zentralinstitute » Fakultät 2 Mathematik und Naturwissenschaften » Publications

Files in This Item:
File Description SizeFormat 
Dokument_14.pdf361,07 kBAdobe PDFThumbnail
View/Open


Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.