Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-10544
For citation please use:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorArtinov, Antoni-
dc.contributor.authorKarkhin, Victor-
dc.contributor.authorKhomich, Pavel-
dc.contributor.authorBachmann, Marcel-
dc.contributor.authorRethmeier, Michael-
dc.date.accessioned2020-09-10T15:09:33Z-
dc.date.available2020-09-10T15:09:33Z-
dc.date.issued2019-07-07-
dc.identifier.issn1290-0729-
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/11659-
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-10544-
dc.description.abstractA numerical framework for simulation of the steady-state thermal behaviour in keyhole mode welding has been developed. It is based on the equivalent heat source concept and consists of two parts: computational thermo-fluid dynamics and heat conduction. The solution of the thermo-fluid dynamics problem by the finite element method for a bounded domain results in a weld pool interface geometry being the input data for a subsequent heat conduction problem solved for a workpiece by a proposed boundary element method. The main physical phenomena, such as keyhole shape, thermo-capillary and natural convection and temperature-dependent material properties are taken into consideration. The developed technique is applied to complete-penetration keyhole laser beam welding of a 15 mm thick low-alloyed steel plate at a welding speed of 33 mm s-1 and a laser power of 18 kW. The fluid flow of the molten metal has a strong influence on the weld pool geometry. The thermo-capillary convection is responsible for an increase of the weld pool size near the plate surfaces and a bulge formation near the plate middle plane. The numerical and experimental molten pools, cross-sectional weld dimensions and thermal cycles of the heat affected zone are in close agreement.en
dc.description.sponsorshipDFG, 411393804, Experimentelle und numerische Untersuchung der Entstehungsmechanismen des Bulgings und dessen Einfluss auf die Bildung von Mittelrippendefekten beim Hochleistungslaserstrahlschweißen niedriglegierter Stähle hoher Blechdickeen
dc.language.isoenen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.ddc621 Angewandte Physikde
dc.subject.otherwelding process simulationen
dc.subject.otherthermo-fluid dynamicsen
dc.subject.otherheat conductionen
dc.subject.otherlaser beam weldingen
dc.subject.otherfinite element methoden
dc.subject.otherboundary element methoden
dc.titleAssessment of thermal cycles by combining thermo-fluid dynamics and heat conduction in keyhole mode welding processesen
dc.typeArticleen
tub.accessrights.dnbfreeen
tub.publisher.universityorinstitutionTechnische Universität Berlinen
dc.identifier.eissn1778-4166-
dc.type.versionacceptedVersionen
dcterms.bibliographicCitation.doi10.1016/j.ijthermalsci.2019.105981en
dcterms.bibliographicCitation.journaltitleInternational Journal of Thermal Sciencesen
dcterms.bibliographicCitation.originalpublisherplaceAmsterdam [u.a.]en
dcterms.bibliographicCitation.volume145en
dcterms.bibliographicCitation.originalpublishernameElsevieren
dcterms.bibliographicCitation.articlenumber105981en
Appears in Collections:FG Fügetechnik » Publications

Files in This Item:
artinov_etal_2019.pdf

Accepted manuscript

Format: Adobe PDF | Size: 5.12 MB
DownloadShow Preview
Thumbnail

Item Export Bar

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.