Please use this identifier to cite or link to this item:
For citation please use:
Main Title: Maximum likelihood difference scales represent perceptual magnitudes and predict appearance matches
Author(s): Wiebel, Christiane B.
Aguilar, Guillermo
Maertens, Marianne
Type: Article
Abstract: One central problem in perception research is to understand how internal experiences are linked to physical variables. Most commonly, this relationship is measured using the method of adjustment, but this has two shortcomings: The perceptual scales that relate physical and perceptual variables are not measured directly, and the method often requires perceptual comparisons between viewing conditions. To overcome these problems, we measured perceptual scales of surface lightness using maximum likelihood difference scaling, asking observers only to compare the lightness of surfaces presented in the same context. Observers were lightness constant, and the perceptual scales qualitatively and quantitatively predicted perceptual matches obtained in a conventional adjustment experiment. Additionally, we show that a contrast-based model of lightness perception predicted 98% of the variance in the scaling and 88% in the matching data. We suggest that the predictive power was higher for scales because they are closer to the true variables of interest.
Subject(s): lightness perception
psychological experience
physical variable
maximum likelihood difference scaling
Issue Date: 2017
Date Available: 20-Nov-2020
Language Code: en
DDC Class: 610 Medizin und Gesundheit
Sponsor/Funder: DFG, 188583648, Die Bestimmung der Beziehung zwischen subjektiver Empfindung und Diskriminationsvermögen durch eine Kombination aus Psychophysik, Computationaler Modellierung und der Messung neuronaler Antworten
DFG, 103586207, GRK 1589: Verarbeitung sensorischer Informationen in neuronalen Systemen
Journal Title: Journal of Vision
Publisher: Association for Research in Vision and Ophthalmology (ARVO)
Volume: 17
Issue: 4
Article Number: 1
Publisher DOI: 10.1167/17.4.1
EISSN: 1534-7362
TU Affiliation(s): Fak. 4 Elektrotechnik und Informatik » Inst. Softwaretechnik und Theoretische Informatik » FG Neuronale Informationsverarbeitung
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
Format: Adobe PDF | Size: 911.64 kB
DownloadShow Preview

Item Export Bar

This item is licensed under a Creative Commons License Creative Commons