Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-10985
For citation please use:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHomes, Simon-
dc.contributor.authorHeinen, Matthias-
dc.contributor.authorVrabec, Jadran-
dc.contributor.authorFischer, Johann-
dc.date.accessioned2020-12-03T10:26:53Z-
dc.date.available2020-12-03T10:26:53Z-
dc.date.issued2020-10-24-
dc.identifier.issn0026-8976-
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/12110-
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-10985-
dc.description.abstractMolecular dynamics simulations are conducted to investigate the evaporation of the truncated (2.5σ) and shifted Lennard–Jones fluid into vacuum. Evaporation is maintained under stationary conditions, while the bulk liquid temperature and the thermal driving force gradient are varied over wide ranges. It is found that the particle flux and the energy flux solely depend on the interface temperature. Both of these quantities are correlated to estimate their values for macroscopically large systems. The latter is analysed by a hydrodynamic energy balance, considering conductive heat transport by Fourier's law. Following the Hertz–Knudsen approach, the evaporation coefficient is determined and found to be in good agreement with literature data based on the kinetic equation for fluids and molecular dynamics.en
dc.description.sponsorshipDFG, 84292822, TRR 75: Tropfendynamische Prozesse unter extremen Umgebungsbedingungenen
dc.description.sponsorshipBMBF, 01IH16008, Verbundprojekt: TaLPas - Task-basierte Lastverteilung und Auto-Tuning in der Partikelsimulationen
dc.language.isoenen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.ddc530 Physikde
dc.subject.otherevaporationen
dc.subject.otherevaporation coefficienten
dc.subject.otherheat transporten
dc.subject.othermolecular dynamicsen
dc.subject.otherLennard–Jones fluiden
dc.titleEvaporation driven by conductive heat transporten
dc.typeArticleen
tub.accessrights.dnbembargoed*
tub.publisher.universityorinstitutionTechnische Universität Berlinen
dc.identifier.eissn1362-3028-
dc.type.versionacceptedVersionen
dcterms.bibliographicCitation.doi10.1080/00268976.2020.1836410en
dcterms.bibliographicCitation.journaltitleMolecular Physicsen
dcterms.bibliographicCitation.originalpublisherplaceLondonen
dcterms.bibliographicCitation.originalpublishernameTaylor & Francisen
dcterms.bibliographicCitation.articlenumbere1836410en
Appears in Collections:FG Thermodynamik und Thermische Verfahrenstechnik » Publications

Files in This Item:
homes_etal_2020.pdf   Until 2021-10-25

Accepted manuscript

Format: Adobe PDF | Size: 8.07 MB
Download   Request a copy

Item Export Bar

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.