Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-11073
For citation please use:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorXia, Yi-
dc.contributor.authorFan, Xin-
dc.contributor.authorYang, Hua-
dc.contributor.authorLi, Ling-
dc.contributor.authorHe, Chao-
dc.contributor.authorCheng, Chong-
dc.contributor.authorHaag, Rainer-
dc.date.accessioned2020-12-16T12:29:11Z-
dc.date.available2020-12-16T12:29:11Z-
dc.date.issued2020-08-19-
dc.identifier.issn1613-6810-
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/12198-
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-11073-
dc.description.abstractCurrently, mesenchymal stem cells (MSCs)‐based therapies for bone regeneration and treatments have gained significant attention in clinical research. Though many chemical and physical cues which influence the osteogenic differentiation of MSCs have been explored, scaffolds combining the benefits of Zn2+ ions and unique nanostructures may become an ideal interface to enhance osteogenic and anti‐infective capabilities simultaneously. In this work, motivated by the enormous advantages of Zn‐based metal–organic framework‐derived nanocarbons, C‐ZnO nanocarbons‐modified fibrous scaffolds for stem cell‐based osteogenic differentiation are constructed. The modified scaffolds show enhanced expression of alkaline phosphatase, bone sialoprotein, vinculin, and a larger cell spreading area. Meanwhile, the caging of ZnO nanoparticles can allow the slow release of Zn2+ ions, which not only activate various signaling pathways to guide osteogenic differentiation but also prevent the potential bacterial infection of implantable scaffolds. Overall, this study may provide new insight for designing stem cell‐based nanostructured fibrous scaffolds with simultaneously enhanced osteogenic and anti‐infective capabilities.en
dc.description.sponsorshipTU Berlin, Open-Access-Mittel – 2020en
dc.description.sponsorshipDFG, 32049920, SFB 765: Multivalenz als chemisches Organisations- und Wirkprinzip: Neue Architekturen, Funktionen und Anwendungenen
dc.language.isoenen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subject.ddc620 Ingenieurwissenschaften und zugeordnete Tätigkeitende
dc.subject.otheranti‐infective surfacesen
dc.subject.othercarbon nanomaterialsen
dc.subject.othermetal–organic frameworksen
dc.subject.othernanostructured fibrous scaffoldsen
dc.subject.otherosteogenic surfacesen
dc.subject.otherstem cellsen
dc.titleZnO/Nanocarbons‐Modified Fibrous Scaffolds for Stem Cell‐Based Osteogenic Differentiationen
dc.typeArticleen
dc.date.updated2020-12-07T10:45:10Z-
tub.accessrights.dnbfreeen
tub.publisher.universityorinstitutionTechnische Universität Berlinen
dc.identifier.eissn1613-6829-
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.1002/smll.202003010en
dcterms.bibliographicCitation.journaltitleSmallen
dcterms.bibliographicCitation.originalpublisherplaceNew York, NYen
dcterms.bibliographicCitation.volume16en
dcterms.bibliographicCitation.originalpublishernameWileyen
dcterms.bibliographicCitation.issue38en
dcterms.bibliographicCitation.articlenumber2003010en
Appears in Collections:FG Kontinuumsmechanik und Materialtheorie » Publications

Files in This Item:
SMLL_SMLL202003010.pdf
Format: Adobe PDF | Size: 10.3 MB
DownloadShow Preview
Thumbnail

Item Export Bar

This item is licensed under a Creative Commons License Creative Commons