Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-11080
For citation please use:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorElia, Giuseppe Antonio-
dc.contributor.authorGreco, Giorgia-
dc.contributor.authorKamm, Paul Hans-
dc.contributor.authorGarcía‐Moreno, Francisco-
dc.contributor.authorRaoux, Simone-
dc.contributor.authorHahn, Robert-
dc.date.accessioned2020-12-16T13:25:29Z-
dc.date.available2020-12-16T13:25:29Z-
dc.date.issued2020-09-06-
dc.identifier.issn1616-301X-
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/12205-
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-11080-
dc.description.abstractRechargeable graphite dual‐ion batteries are extremely appealing for grid‐level stationary storage of electricity, thanks to the low‐cost and high‐performance metrics, such as high‐power density, energy efficiency, long cycling life, and good energy density. An in‐depth understanding of the anion intercalation mechanism in graphite is fundamental for the design of highly efficient systems. In this work, a comparison is presented between pyrolytic (PG) and natural (NG) graphite as positive electrode materials in rechargeable aluminum batteries, employing an ionic liquid electrolyte. The two systems are characterized by operando synchrotron energy‐dispersive X‐ray diffraction and time‐resolved computed tomography simultaneously, establishing a powerful characterization methodology, which can also be applied more in general to carbon‐based energy‐related materials. A more in‐depth insight into the AlCl4−/graphite intercalation mechanism is obtained, evidencing a mixed‐staged region in the initial phase and a two‐staged region in the second phase. Moreover, strain analysis suggests a correlation between the irreversibility of the PG electrode and the increase of the inhomogenous strain. Finally, the imaging analysis reveals the influence of graphite morphology in the electrode volume expansion upon cycling.en
dc.description.sponsorshipEC/H2020/646286/EU/HIGH SPECIFIC ENERGY ALUMINIUM-ION RECHARGEABLE DECENTRALIZED ELECTRICITY GENERATION SOURCES/ALIONen
dc.description.sponsorshipBMBF, 03XP0128E, ALIBATT - Al-Ionen-Batterie mit hoher volumetrischer Energiedichte für die Elektromobilitäten
dc.description.sponsorshipTU Berlin, Open-Access-Mittel – 2020de
dc.language.isoenen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subject.ddc620 Ingenieurwissenschaften und zugeordnete Tätigkeitende
dc.subject.otherAl batteryen
dc.subject.othergraphite intercalation compounden
dc.subject.otheroperando characterizationen
dc.subject.othertomographyen
dc.subject.otherX‐ray diffractionen
dc.titleSimultaneous X‐Ray Diffraction and Tomography Operando Investigation of Aluminum/Graphite Batteriesen
dc.typeArticleen
dc.date.updated2020-12-07T10:45:30Z-
tub.accessrights.dnbfreeen
tub.publisher.universityorinstitutionTechnische Universität Berlinen
dc.identifier.eissn1616-3028-
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.1002/adfm.202003913en
dcterms.bibliographicCitation.journaltitleAdvanced Functional Materialsen
dcterms.bibliographicCitation.originalpublisherplaceNew York, NYen
dcterms.bibliographicCitation.volume30en
dcterms.bibliographicCitation.originalpublishernameWileyen
dcterms.bibliographicCitation.issue43en
dcterms.bibliographicCitation.articlenumber2003913en
Appears in Collections:FG Nano Interconnect Technologies » Publications

Files in This Item:
ADFM_ADFM202003913.pdf
Format: Adobe PDF | Size: 1.37 MB
DownloadShow Preview
Thumbnail

Item Export Bar

This item is licensed under a Creative Commons License Creative Commons