Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-11092
For citation please use:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBroicher, Cornelia-
dc.contributor.authorZeng, Feng-
dc.contributor.authorPfänder, Norbert-
dc.contributor.authorFrisch, Marvin-
dc.contributor.authorBisswanger, Timo-
dc.contributor.authorRadnik, Jörg-
dc.contributor.authorStockmann, Jörg Manfred-
dc.contributor.authorPalkovits, Stefan-
dc.contributor.authorBeine, Anna Katharina-
dc.contributor.authorPalkovits, Regina-
dc.date.accessioned2020-12-16T14:57:43Z-
dc.date.available2020-12-16T14:57:43Z-
dc.date.issued2020-09-24-
dc.identifier.issn1867-3880-
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/12217-
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-11092-
dc.description.abstractHydrogen economy is a central aspect of future energy supply, as hydrogen can be used as energy storage and fuel. In order to make water electrolysis efficient, the limiting oxygen evolution reaction (OER) needs to be optimized. Therefore, C‐based composite materials containing earth‐abundant Fe and Mn were synthesized, characterized and tested in the OER. For pyrolysis temperatures above 700 °C N‐rich multi‐walled carbon nanotubes (MWCNT) are obtained. Inside the tubes Fe3C particles are formed, Fe and Mn oxides are incorporated in the carbon matrix and metal spinel nanoparticles cover the outer surface. The best catalyst prepared at 800 °C achieves a low overpotential of 389 mV (at 10 mA/cm2) and high stability (22.6 h). From electrochemical measurements and characterization it can be concluded that the high activity is mainly provided by MWCNT, Fe3C and the metal oxides in the conductive carbon matrix. The metal spinel nanoparticles in contrast protect the MWCNT from oxidation and thereby contribute to the high stability.en
dc.description.sponsorshipBMBF, 03SF0508, Clusterprojekt "MANGAN"; Teilprojekt: Entwicklung neuartiger Mangankomplexe zur elektrokatalytischen Generierung von Sauerstoff und Wasserstoff aus Wasseren
dc.language.isoenen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subject.ddc540 Chemie und zugeordnete Wissenschaftende
dc.subject.otheroxygen evolution reactionen
dc.subject.othermulti‐walled carbon nanotubesen
dc.subject.otherironen
dc.subject.othermanganeseen
dc.titleIron and Manganese Containing Multi‐Walled Carbon Nanotubes as Electrocatalysts for the Oxygen Evolution Reaction ‐ Unravelling Influences on Activity and Stabilityen
dc.typeArticleen
dc.date.updated2020-12-07T11:43:36Z-
tub.accessrights.dnbfreeen
tub.publisher.universityorinstitutionTechnische Universität Berlinen
dc.identifier.eissn1867-3899-
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.1002/cctc.202000944en
dcterms.bibliographicCitation.journaltitleChemCatChemen
dcterms.bibliographicCitation.originalpublisherplaceNew York, NYen
dcterms.bibliographicCitation.volume12en
dcterms.bibliographicCitation.pageend5384en
dcterms.bibliographicCitation.pagestart5378en
dcterms.bibliographicCitation.originalpublishernameWileyen
dcterms.bibliographicCitation.issue21en
Appears in Collections:FG Technische Chemie » Publications

Files in This Item:
CCTC_CCTC202000944.pdf
Format: Adobe PDF | Size: 2.39 MB
DownloadShow Preview
Thumbnail

Item Export Bar

This item is licensed under a Creative Commons License Creative Commons