Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-11206
DC FieldValueLanguage
dc.contributor.authorHoffmann, Hans‐Jürgen-
dc.date.accessioned2021-01-07T12:51:53Z-
dc.date.available2021-01-07T12:51:53Z-
dc.date.issued2020-09-18-
dc.identifier.issn0933-5137-
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/12366-
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-11206-
dc.description.abstractMilestones in the development of thermodynamics are the discovery of the absolute temperature scale and the recognition that differential “heat” is a form of energy given as the product of absolute temperature and differential entropy. Following a new path, the last statement results from a careful analysis of the heat transfer applying the first theorem without reference to the usual cycles in thermodynamics. This confirms also characteristic properties of entropy. In particular, the total entropy can never decrease in a process. In thermal equilibrium, the differential thermal energy is proportional to the differential entropy with the constant of proportionality being the temperature of the heat and entropy. Hence, thermal energy and entropy are transferred simultaneously into the same storage facilities, some of which are mentioned. However, the issue which one is the superior quantity is obsolete. The entropy is maximum for a given amount of exchanged thermal energy and, vice versa, for a given amount of exchanged entropy the concomitant energy is minimum. We calculate the thermal energy and entropy of phonons (as bosons) in oscillators and of electrons (as fermions) in their states of solids and melts as examples from statistical thermodynamics. The thermal energy or heat is the sum of the energies of all bosons and fermions in their elementary states or quantum states according to Bose Einstein and Fermi Dirac statistics in thermal equilibrium minus the total energy in the limit T→0 K. The entropy can be written as mixing entropy of all of these quantum states weighted with their occupancies, in agreement with an earlier publication. Thus, entropy is a logarithmic metrics of the number of all possible variants to distribute the respective total energy over all elementary states in thermal equilibrium.en
dc.language.isoenen
dc.subject.ddc620 Ingenieurwissenschaften und zugeordnete Tätigkeitende
dc.subject.otherthermal energyen
dc.subject.otherentropyen
dc.subject.othermixing entropyen
dc.subject.otherstatistical entropyen
dc.subject.otherthermal equilibriumen
dc.subject.othernegative absolute temperatureen
dc.subject.otherWärmeen
dc.subject.otherthermische Energieen
dc.subject.otherEntropieen
dc.subject.otherMischungsentropieen
dc.subject.otherstatistische Entropieen
dc.subject.otherthermisches Gleichgewichten
dc.subject.othernegative absolute Temperaturen
dc.titleFrom heat to entropyen
dc.typeArticleen
dc.date.updated2020-12-07T10:44:59Z-
tub.accessrights.dnbfreeen
tub.publisher.universityorinstitutionTechnische Universität Berlinen
dc.identifier.eissn1521-4052-
dc.title.translatedVon der Wärme zur Entropiede
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.1002/mawe.202000067en
dcterms.bibliographicCitation.journaltitleMaterialwissenschaft und Werkstofftechniken
dcterms.bibliographicCitation.originalpublisherplaceNew York, NYen
dcterms.bibliographicCitation.volume51en
dcterms.bibliographicCitation.pageend1233en
dcterms.bibliographicCitation.pagestart1191en
dcterms.bibliographicCitation.originalpublishernameWileyen
dcterms.bibliographicCitation.issue9en
Appears in Collections:FG Glaswerkstoffe » Publications

Files in This Item:
MAWE_MAWE202000067.pdf
Format: Adobe PDF | Size: 10.71 MB

Item Export Bar