Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-11546
For citation please use:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCriado, Francisco-
dc.contributor.authorNewman, Andrew-
dc.date.accessioned2021-03-05T08:55:16Z-
dc.date.available2021-03-05T08:55:16Z-
dc.date.issued2020-09-23-
dc.identifier.issn0179-5376-
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/12746-
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-11546-
dc.description.abstractWe consider the question of the largest possible combinatorial diameter among pure dimensional and strongly connected (d-1)-dimensional simplicial complexes on n vertices, denoted H_s(n, d). Using a probabilistic construction we give a new lower bound on H_s(n, d) that is within an O(d^2) factor of the upper bound. This improves on the previously best known lower bound which was within a factor of e^varTheta (d) of the upper bound. We also make a similar improvement in the case of pseudomanifolds.en
dc.description.sponsorshipTU Berlin, Open-Access-Mittel – 2020en
dc.description.sponsorshipDFG, 385256563, GRK 2434: Facetten der Komplexitäten
dc.language.isoen-
dc.relation.ispartof10.14279/depositonce-11781en
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subject.ddc510 Mathematiken
dc.subject.otherdiameteren
dc.subject.otherHirsch conjectureen
dc.subject.otherprobabilistic methoden
dc.subject.othersimplicial complexen
dc.subject.otherpseudomanifoldsen
dc.titleRandomized construction of complexes with large diameteren
dc.typeArticleen
tub.accessrights.dnbfreeen
tub.publisher.universityorinstitutionTechnische Universität Berlinen
dc.identifier.eissn1432-0444-
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.1007/s00454-020-00248-2en
dcterms.bibliographicCitation.journaltitleDiscrete and Computational Geometryen
dcterms.bibliographicCitation.originalpublisherplaceLondon [u.a.]en
dcterms.bibliographicCitation.originalpublishernameSpringerNatureen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften » Inst. Mathematik » FG Diskrete Mathematik / Geometriede
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:

Item Export Bar

This item is licensed under a Creative Commons License Creative Commons