Please use this identifier to cite or link to this item:
For citation please use:
Main Title: Neural Network Hyperparameter Optimization for the Assisted Selection of Assembly Equipment
Author(s): Hagemann, Simon
Sünnetcioglu, Atakan
Fahse, Tobias
Stark, Rainer
Type: Conference Object
Abstract: The design of assembly systems has been mainly a manual task including activities such as gathering and analyzing product data, deriving the production process and assigning suitable manufacturing resources. Especially in the early phases of assembly system design in automotive industry, the complexity reaches a substantial level, caused by the increasing number of product variants and the decreased time to market. In order to mitigate the arising challenges, researchers are continuously developing novel methods to support the design of assembly systems. This paper presents an artificial intelligence system for assisting production engineers in the selection of suitable equipment for highly automated assembly systems.
Subject(s): artificial intelligence
assembly system design
neural network
hyperparameter optimization
Issue Date: 16-Dec-2019
Date Available: 20-Apr-2021
Language Code: en
DDC Class: 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten
Proceedings Title: 2019 23rd International Conference on Mechatronics Technology (ICMT)
Publisher: Institute of Electrical and Electronics Engineers (IEEE)
Publisher DOI: 10.1109/ICMECT.2019.8932099
ISBN: 978-1-7281-3998-2
TU Affiliation(s): Fak. 5 Verkehrs- und Maschinensysteme » Inst. Werkzeugmaschinen und Fabrikbetrieb » FG Industrielle Informationstechnik
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
Format: Adobe PDF | Size: 964.01 kB
DownloadShow Preview

Item Export Bar

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.