Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-11902
For citation please use:
Main Title: Inverse analysis of metamaterials and parameter determination by means of an automatized optimization problem
Author(s): Shekarchizadeh, Navid
Abali, Bilen Emek
Barchiesi, Emilio
Bersani, Alberto Maria
Type: Article
URI: https://depositonce.tu-berlin.de/handle/11303/13109
http://dx.doi.org/10.14279/depositonce-11902
License: https://creativecommons.org/licenses/by/4.0/
Abstract: In this paper, a novel parameter determination technique is developed for material models in continuum mechanics aimed at describing metamaterials. Owing to their peculiar mechanical properties and behaviors, such as extreme elasticity or high strength‐to‐weight ratio, metamaterials are of interest to be simulated by reduced‐order modeling by means of the generalized mechanics. Such models incorporate constitutive parameters to be determined; we develop an automatized optimization process specifically for obtaining metamaterials parameters. The process aims at minimizing a mechanically meaningful error function measuring the deviation of the continuum from a detailed description by using the Trust Region Reflective optimization method. The parameter identification procedure is tested for an exemplary extension experiment of a metamaterial, proving to be robust and reliable.
Subject(s): Finite Element Method
FEM
inverse analysis
metamaterials
optimization
Issue Date: 8-Jan-2021
Date Available: 18-May-2021
Language Code: en
DDC Class: 530 Physik
Sponsor/Funder: TU Berlin, Open-Access-Mittel - 2021
Journal Title: ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik
Publisher: Wiley-VCH
Article Number: e202000277
Publisher DOI: 10.1002/zamm.202000277
EISSN: 1521-4001
ISSN: 0044-2267
TU Affiliation(s): Fak. 5 Verkehrs- und Maschinensysteme » Inst. Mechanik » FG Kontinuumsmechanik und Materialtheorie
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
zamm.202000277.pdf
Format: Adobe PDF | Size: 2.05 MB
DownloadShow Preview
Thumbnail

Item Export Bar

This item is licensed under a Creative Commons License Creative Commons