Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-11957
For citation please use:
Main Title: Retention time prediction using neural networks increases identifications in crosslinking mass spectrometry
Translated Title: Retentionszeitvorhersage mittels Neuronaler Netze erhöht die Identifikationen in Quervernetzungsmassenspektrometrie
Author(s): Giese, Sven H.
Sinn, Ludwig R.
Wegner, Fritz
Rappsilber, Juri
Type: Article
Language Code: en
Abstract: Crosslinking mass spectrometry has developed into a robust technique that is increasingly used to investigate the interactomes of organelles and cells. However, the incomplete and noisy information in the mass spectra of crosslinked peptides limits the numbers of protein–protein interactions that can be confidently identified. Here, we leverage chromatographic retention time information to aid the identification of crosslinked peptides from mass spectra. Our Siamese machine learning model xiRT achieves highly accurate retention time predictions of crosslinked peptides in a multi-dimensional separation of crosslinked E. coli lysate. Importantly, supplementing the search engine score with retention time features leads to a substantial increase in protein–protein interactions without affecting confidence. This approach is not limited to cell lysates and multi-dimensional separation but also improves considerably the analysis of crosslinked multiprotein complexes with a single chromatographic dimension. Retention times are a powerful complement to mass spectrometric information to increase the sensitivity of crosslinking mass spectrometry analyses.
URI: https://depositonce.tu-berlin.de/handle/11303/13163
http://dx.doi.org/10.14279/depositonce-11957
Issue Date: 28-May-2021
Date Available: 31-May-2021
DDC Class: 500 Naturwissenschaften und Mathematik
000 Informatik, Informationswissenschaft, allgemeine Werke
570 Biowissenschaften; Biologie
Subject(s): deep learning
proteomics
mass spectrometry
liquid chromatography
machine learning
protein–protein interaction networks
Sponsor/Funder: DFG, 390540038, EXC 2008: UniSysCat
DFG, 392923329, GRK 2473: Bioaktive Peptide - Innovative Aspekte zur Synthese und Biosynthese
TU Berlin, Open-Access-Mittel - 2021
License: https://creativecommons.org/licenses/by/4.0/
Journal Title: Nature Communications
Publisher: Springer Nature
Publisher Place: London
Volume: 12
Article Number: 3237
Publisher DOI: 10.1038/s41467-021-23441-0
EISSN: 2041-1723
Appears in Collections:FG Bioanalytik » Publications

Files in This Item:
Giese_et_al-2021-Nature_Communications.pdf

Publication

Format: Adobe PDF | Size: 5.62 MB
DownloadShow Preview
Thumbnail

Item Export Bar

This item is licensed under a Creative Commons License Creative Commons