Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-12028
For citation please use:
Main Title: In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution
Author(s): Dionigi, Fabio
Zeng, Zhenhua
Sinev, Ilya
Merzdorf, Thomas
Deshpande, Siddharth
Lopez, Miguel Bernal
Kunze, Sebastian
Zegkinoglou, Ioannis
Sarodnik, Hannes
Dingxin Fan, Dingxin Fan
Bermann, Arno
Drnec, Jakub
Araujo, Jorge Ferreira de
Gliech, Manuel
Teschner, Detre
Zhu, Jing
Li, Wei-Xue
Greeley, Jeffrey
Cuenya, Beatriz Roldan
Strasser, Peter
Type: Article
Language Code: en
Abstract: NiFe and CoFe (MFe) layered double hydroxides (LDHs) are among the most active electrocatalysts for the alkaline oxygen evolution reaction (OER). Herein, we combine electrochemical measurements, operando X-ray scattering and absorption spectroscopy, and density functional theory (DFT) calculations to elucidate the catalytically active phase, reaction center and the OER mechanism. We provide the first direct atomic-scale evidence that, under applied anodic potentials, MFe LDHs oxidize from as-prepared α-phases to activated γ-phases. The OER-active γ-phases are characterized by about 8% contraction of the lattice spacing and switching of the intercalated ions. DFT calculations reveal that the OER proceeds via a Mars van Krevelen mechanism. The flexible electronic structure of the surface Fe sites, and their synergy with nearest-neighbor M sites through formation of O-bridged Fe-M reaction centers, stabilize OER intermediates that are unfavorable on pure M-M centers and single Fe sites, fundamentally accounting for the high catalytic activity of MFe LDHs.
URI: https://depositonce.tu-berlin.de/handle/11303/13233
http://dx.doi.org/10.14279/depositonce-12028
Issue Date: 20-May-2020
Date Available: 10-Jun-2021
DDC Class: 540 Chemie und zugeordnete Wissenschaften
Subject(s): density functional theory
electrocatalysis
energy
Sponsor/Funder: DFG, 390540038, EXC 2008: Unifying Systems in Catalysis "UniSysCat"
EC/H2020/725915/EU/In situ and Operando Nanocatalysis: Size, Shape and Chemical State Effects/OPERANDOCAT
DFG, 388390466, TRR 247: Heterogene Oxidationskatalyse in der Flüssigphase – Materialien und Mechanismen in der thermischen, Elektro- und Photokatalyse
BMWi, 03EIV041F, Verbundvorhaben: MethQuest - MethFuel - Innovative Methanerzeugung auf Basis Erneuerbarer Quellen; Teilvorhaben: Meerwasserelektrolyse
License: https://creativecommons.org/licenses/by/4.0/
Journal Title: Nature Communications
Publisher: Springer Nature
Publisher Place: Heidelberg
Volume: 11
Article Number: 2522
Publisher DOI: 10.1038/s41467-020-16237-1
EISSN: 2041-1723
Appears in Collections:FG Technische Chemie » Publications

Files in This Item:
Dionigi_etal_In-situ_2020.pdf
Format: Adobe PDF | Size: 1.91 MB
DownloadShow Preview
Thumbnail

Item Export Bar

This item is licensed under a Creative Commons License Creative Commons