Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-12223
For citation please use:
Main Title: Data for our paper "Deep Learning Based Virtual Point Tracking for Real-Time Target-less Dynamic Displacement Measurement in Railway Applications"
Author(s): Shi, Dachuan
Type: Image
Is Supplement To: https://arxiv.org/abs/2101.06702v2
Language Code: en
Abstract: This is data used for training and evaluating the neural networks used in our paper. The Abstract of our paper: In the application of computer-vision-based displacement measurement, an optical target is usually required to prove the reference. If the optical target cannot be attached to the measuring objective, edge detection, feature matching, and template matching are the most common approaches in target-less photogrammetry. However, their performance significantly relies on parameter settings. This becomes problematic in dynamic scenes where complicated background texture exists and varies over time. We propose virtual point tracking for real-time target-less dynamic displacement measurement, incorporating deep learning techniques and domain knowledge to tackle this issue. Our approach consists of three steps: 1) automatic calibration for detection of region of interest; 2) virtual point detection for each video frame using deep convolutional neural network; 3) domain-knowledge based rule engine for point tracking in adjacent frames. The proposed approach can be executed on an edge computer in a real-time manner (i.e. over 30 frames per second). We demonstrate our approach for a railway application, where the lateral displacement of the wheel on the rail is measured during operation. We also implemented an algorithm using template matching and line detection as the baseline for comparison. The numerical experiments have been performed to evaluate our approach’s performance and latency in a harsh railway environment with dynamic complex backgrounds. We make our code and data available at https://github.com/quickhdsdc/Point-Tracking-for-Displacement-Measurement- in-Railway-Applications.
URI: https://depositonce.tu-berlin.de/handle/11303/13437
http://dx.doi.org/10.14279/depositonce-12223
Issue Date: 22-Jul-2021
Date Available: 30-Jul-2021
DDC Class: 600 Technik, Medizin, angewandte Wissenschaften
Subject(s): railway
point tracking
computer vision
displacement measurement
photogrammetry
deep learning
wheel-rail contact
License: https://choosealicense.com/licenses/mit/
Appears in Collections:FG Schienenfahrzeuge » Research Data

Files in This Item:
dataset.7z
Format: Portable Network Graphics | Size: 1.61 GB
Download

Item Export Bar

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.