Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-12239
For citation please use:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorArinchtein, Aleks-
dc.contributor.authorYe, Meng-Yang-
dc.contributor.authorGeske, Michael-
dc.contributor.authorFrisch, Marvin-
dc.contributor.authorKraehnert, Ralph-
dc.date.accessioned2021-07-26T12:43:31Z-
dc.date.available2021-07-26T12:43:31Z-
dc.date.issued2021-06-25-
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/13453-
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-12239-
dc.description.abstractCO2 Fischer–Tropsch synthesis (CO2–FTS) is a promising technology enabling conversion of CO2 into valuable chemical feedstocks via hydrogenation. Iron–based CO2–FTS catalysts are known for their high activities and selectivities towards the formation of higher hydrocarbons. Importantly, iron carbides are the presumed active phase strongly associated with the formation of higher hydrocarbons. Yet, many factors such as reaction temperature, atmosphere, and pressure can lead to complex transformations between different oxide and/or carbide phases, which, in turn, alter selectivity. Thus, understanding the mechanism and kinetics of carbide formation remains challenging. We propose model–type iron oxide films of controlled nanostructure and phase composition as model materials to study carbide formation in syngas atmospheres. In the present work, different iron oxide precursor films with controlled phase composition (hematite, ferrihydrite, maghemite, maghemite/magnetite) and ordered mesoporosity are synthesized using the evaporation–induced self–assembly (EISA) approach. The model materials are then exposed to a controlled atmosphere of CO/H2 at 300 °C. Physicochemical analysis of the treated materials indicates that all oxides convert into carbides with a core–shell structure. The structure appears to consist of crystalline carbide cores surrounded by a partially oxidized carbide shell of low crystallinity. Larger crystallites in the original iron oxide result in larger carbide cores. The presented simple route for the synthesis and analysis of soft–templated iron carbide films will enable the elucidation of the dynamics of the oxide to carbide transformation in future work.en
dc.description.sponsorshipDFG, 406695057, Fe-basierte Katalysatoren für die Umwandlung von CO2 zu höheren Kohlenwasserstoffen unter dynamischen Bedingungenen
dc.description.sponsorshipBMBF, 03EK3052A, Verbundvorhaben ATO-KAT: Atomar dünn beschichtete poröse Elektroden als neuartige Katalysatoren für die Wasser-Elektrolyse: - leitfähige Träger und Elektrochemie -en
dc.description.sponsorshipDFG, 414044773, Open Access Publizieren 2021 - 2022 / Technische Universität Berlinde
dc.language.isoenen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subject.ddc540 Chemie und zugeordnete Wissenschaftende
dc.subject.otherCO2 Fischer–Tropsch synthesisen
dc.subject.otheriron oxideen
dc.subject.otheriron carbidesen
dc.subject.othermesoporous filmsen
dc.subject.otherEISAen
dc.titleInfluence of Phase Composition and Pretreatment on the Conversion of Iron Oxides into Iron Carbides in Syngas Atmospheresen
dc.typeArticleen
dc.date.updated2021-07-19T12:35:34Z-
tub.accessrights.dnbfreeen
tub.publisher.universityorinstitutionTechnische Universität Berlinen
dc.identifier.eissn2073-4344-
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.3390/catal11070773en
dcterms.bibliographicCitation.journaltitleCatalystsen
dcterms.bibliographicCitation.originalpublisherplaceBaselen
dcterms.bibliographicCitation.volume11en
dcterms.bibliographicCitation.originalpublishernameMDPIen
dcterms.bibliographicCitation.issue7en
dcterms.bibliographicCitation.articlenumber773en
tub.affiliationVerbundforschung » Exzellenzcluster (EXC) » BasCat Joint Labde
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
catalysts-11-00773-v2.pdf
Format: Adobe PDF | Size: 2.31 MB
DownloadShow Preview
Thumbnail

Item Export Bar

This item is licensed under a Creative Commons License Creative Commons