Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-12392
For citation please use:
Main Title: Evolving Highly Active Oxidic Iron(III) Phase from Corrosion of Intermetallic Iron Silicide to Master Efficient Electrocatalytic Water Oxidation and Selective Oxygenation of 5‐Hydroxymethylfurfural
Author(s): Hausmann, J. Niklas
Beltrán‐Suito, Rodrigo
Mebs, Stefan
Hlukhyy, Viktor
Fässler, Thomas F.
Dau, Holger
Driess, Matthias
Menezes, Prashanth W.
Type: Article
URI: https://depositonce.tu-berlin.de/handle/11303/13605
http://dx.doi.org/10.14279/depositonce-12392
License: https://creativecommons.org/licenses/by/4.0/
Abstract: In a green energy economy, electrocatalysis is essential for chemical energy conversion and to produce value added chemicals from regenerative resources. To be widely applicable, an electrocatalyst should comprise the Earth's crust's most abundant elements. The most abundant 3d metal, iron, with its multiple accessible redox states has been manifold applied in chemocatalytic processes. However, due to the low conductivity of FeIIIOxHy phases, its applicability for targeted electrocatalytic oxidation reactions such as water oxidation is still limited. Herein, it is shown that iron incorporated in conductive intermetallic iron silicide (FeSi) can be employed to meet this challenge. In contrast to silicon‐poor iron–silicon alloys, intermetallic FeSi possesses an ordered structure with a peculiar bonding situation including covalent and ionic contributions together with conducting electrons. Using in situ X‐ray absorption and Raman spectroscopy, it could be demonstrated that, under the applied corrosive alkaline conditions, the FeSi partly forms a unique, oxidic iron(III) phase consisting of edge and corner sharing [FeO6] octahedra together with oxidized silicon species. This phase is capable of driving the oxyge evolution reaction (OER) at high efficiency under ambient and industrially relevant conditions (500 mA cm−2 at 1.50 ± 0.025 VRHE and 65 °C) and to selectively oxygenate 5‐hydroxymethylfurfural (HMF).
Subject(s): alkaline oxygen evolution reaction
intermetallic compounds
iron
selective oxygenation of organics
silicon
water oxidation
Issue Date: 28-May-2021
Date Available: 17-Sep-2021
Language Code: en
DDC Class: 540 Chemie und zugeordnete Wissenschaften
Sponsor/Funder: DFG, 390540038, EXC 2008: Unifying Systems in Catalysis "UniSysCat"
BMBF, 05K19KE1, Operando Röntgenabsorptions-Spektroskopie (XANES und EXAFS) zur Verfolgung synchronisierter Reaktionsdynamiken in katalytischen Materialien
Journal Title: Advanced Materials
Publisher: Wiley
Volume: 33
Issue: 27
Article Number: 2008823
Publisher DOI: 10.1002/adma.202008823
EISSN: 1521-4095
ISSN: 0935-9648
TU Affiliation(s): Fak. 2 Mathematik und Naturwissenschaften » Inst. Chemie » FG Metallorganische Chemie und Anorganische Materialien
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
ADMA_ADMA202008823.pdf
Format: Adobe PDF | Size: 3.98 MB
DownloadShow Preview
Thumbnail

Item Export Bar

This item is licensed under a Creative Commons License Creative Commons