Please use this identifier to cite or link to this item:
http://dx.doi.org/10.14279/depositonce-12584
For citation please use:
For citation please use:
Main Title: | Combining machine learning and computational chemistry for predictive insights into chemical systems |
Author(s): | Keith, John A. Vassilev-Galindo, Valentin Cheng, Bingqing Chmiela, Stefan Gastegger, Michael Müller, Klaus-Robert Tkatchenko, Alexandre |
Type: | Article |
URI: | https://depositonce.tu-berlin.de/handle/11303/13808 http://dx.doi.org/10.14279/depositonce-12584 |
License: | https://creativecommons.org/licenses/by-nc-nd/4.0/ |
Abstract: | Machine learning models are poised to make a transformative impact on chemical sciences by dramatically accelerating computational algorithms and amplifying insights available from computational chemistry methods. However, achieving this requires a confluence and coaction of expertise in computer science and physical sciences. This Review is written for new and experienced researchers working at the intersection of both fields. We first provide concise tutorials of computational chemistry and machine learning methods, showing how insights involving both can be achieved. We follow with a critical review of noteworthy applications that demonstrate how computational chemistry and machine learning can be used together to provide insightful (and useful) predictions in molecular and materials modeling, retrosyntheses, catalysis, and drug design. |
Subject(s): | electrical energy quantum mechanics potential energy materials molecules |
Issue Date: | 7-Jul-2021 |
Date Available: | 4-Nov-2021 |
Language Code: | en |
DDC Class: | 540 Chemie und zugeordnete Wissenschaften |
Sponsor/Funder: | BMBF, 01IS14013A, Verbundprojekt: BBDC - Berliner Kompetenzzentrum für Big Data BMBF, 01GQ1115, D-JPN Verbund: Adaptive Gehirn-Computer-Schnittstellen (BCI) in nichtstationären Umgebungen BMBF, 01GQ0850, Verbundprojekt: Bernstein Fokus Neurotechnologie - Nichtinvasive Neurotechnologie für Mensch-Maschine Interaktion - Teilprojekte A1, A3, A4, B4, W3, Zentrum BMBF, 01IS18025A, Verbundprojekt BIFOLD-BBDC: Berlin Institute for the Foundations of Learning and Data BMBF, 031L0207D, CompLS - Runde 2 - Verbundprojekt: Patho234 - Multidimensionale Bildanalyse von reaktiven und neoplastischen Lymphknoten durch maschinelles Lernen - Teilprojekt D BMBF, 01IS18037A, Verbundprojekt BIFOLD-BZML: Berlin Institute for the Foundations of Learning and Data DFG, 390685689, EXC 2046: MATH+: Berlin Mathematics Research Center |
Journal Title: | Chemical Reviews |
Publisher: | American Chemical Society (ACS) |
Volume: | 121 |
Issue: | 16 |
Publisher DOI: | 10.1021/acs.chemrev.1c00107 |
Page Start: | 9816 |
Page End: | 9872 |
EISSN: | 1520-6890 |
ISSN: | 0009-2665 |
TU Affiliation(s): | Fak. 4 Elektrotechnik und Informatik » Inst. Softwaretechnik und Theoretische Informatik » FG Maschinelles Lernen |
Appears in Collections: | Technische Universität Berlin » Publications |
Files in This Item:
This item is licensed under a Creative Commons License