Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-12650
For citation please use:
Main Title: Limit of a consistent approximation to the complete compressible Euler system
Author(s): Chaudhuri, Nilasis
Type: Article
URI: https://depositonce.tu-berlin.de/handle/11303/13877
http://dx.doi.org/10.14279/depositonce-12650
License: https://creativecommons.org/licenses/by/4.0/
Abstract: The goal of the present paper is to prove that if a weak limit of a consistent approximation scheme of the compressible complete Euler system in full space Rd,d=2,3 is a weak solution of the system, then the approximate solutions eventually converge strongly in suitable norms locally under a minimal assumption on the initial data of the approximate solutions. The class of consistent approximate solutions is quite general and includes the vanishing viscosity and heat conductivity limit. In particular, they may not satisfy the minimal principle for entropy.
Subject(s): complete compressible Euler system
convergence
approximate solutions
defect measure
Issue Date: 14-Sep-2021
Date Available: 12-Nov-2021
Language Code: en
DDC Class: 510 Mathematik
Sponsor/Funder: TU Berlin, Open-Access-Mittel – 2021
Journal Title: Journal of Mathematical Fluid Mechanics
Publisher: Springer Nature
Volume: 23
Article Number: 97
Publisher DOI: 10.1007/s00021-021-00625-8
EISSN: 1422-6952
ISSN: 1422-6928
TU Affiliation(s): Fak. 2 Mathematik und Naturwissenschaften » Inst. Mathematik » FG Numerische Analysis partieller Differentialgleichungen
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
Chaudhuri_Limit_2021.pdf
Format: Adobe PDF | Size: 468.49 kB
DownloadShow Preview
Thumbnail

Item Export Bar

This item is licensed under a Creative Commons License Creative Commons