Please use this identifier to cite or link to this item:
For citation please use:
Main Title: Hydrochemistry and environmental isotopes of spring water and their relation to structure and lithology identified with remote sensing methods in Wadi Araba, Egypt
Author(s): Wannous, Manal
Theilen-Willige, Barbara
Tröger, Uwe
Falk, Marianne
Siebert, Christian
Bauer, Florian
Type: Article
Abstract: Springs located at the historical sites of Wadi Araba (Eastern Desert of Egypt) and emerging from the escarpments of the Northern and Southern Galala Plateaus were investigated. A combination of methods, including hydrochemistry, stable and radioisotope composition, and structural analyses based on satellite data, provided information about the structure of the subsurface and the derived groundwater flow paths. Satellite images reveal karst features within the northern plateau, e.g. conical landforms. Karstic caves were documented along both escarpments. Chemical analysis of floodwater from Wadi Araba indicates higher concentrations of terrestrial salts compared to floodwaters from central and southern parts of the desert. δ 18 O and δ 2 H signatures in spring waters resemble those of floodwater and fall on the global meteoric water line, confirming their fast infiltration with minor influence of evaporation. The aquifer feeding the springs of the Northern Galala Plateau has low retention and the springs dry out quickly, even after heavy rainfall. Contrastingly, 3 H activities in springs emerging from the Southern Galala Plateau refer to much slower subsurface passage. With respect to 3 H content (3.8 TU) in recent flood waters, the spring water at Southern Galala Plateau contains about 40% recently recharged groundwater. However, its largest spring—the St. Antony spring—discharges water with a radiocarbon age of about 15,000 years. In combination with this spring’s constant and high discharge over a period of several months, that age estimate suggests a large reservoir with moderate to high retention.
Subject(s): Egypt
groundwater recharge
mean residence time
stable isotopes
Issue Date: 4-Jun-2021
Date Available: 6-Dec-2021
Language Code: en
DDC Class: 550 Geowissenschaften
Sponsor/Funder: TU Berlin, Open-Access-Mittel – 2021
Journal Title: Hydrogeology Journal
Publisher: Springer Nature
Volume: 29
Issue: 6
Publisher DOI: 10.1007/s10040-021-02343-x
Page Start: 2245
Page End: 2266
EISSN: 1435-0157
ISSN: 1431-2174
TU Affiliation(s): Zentralinstitut El Gouna
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
Format: Adobe PDF | Size: 20.15 MB
DownloadShow Preview

Item Export Bar

This item is licensed under a Creative Commons License Creative Commons