Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-14238
For citation please use:
Main Title: Jacobi-like algorithms for the indefinite generalized Hermitian eigenvalue problem
Author(s): Mehl, Christian
Type: Research Paper
URI: https://depositonce.tu-berlin.de/handle/11303/15465
http://dx.doi.org/10.14279/depositonce-14238
License: http://rightsstatements.org/vocab/InC/1.0/
Abstract: We discuss structure-preserving Jacobi-like algorithms for the solution of the indefinite generalized Hermitian eigenvalue problem. We discuss a method based on the solution of Hermitian 4-by-4 subproblems which generalizes the Jacobi-like method of Bunse-Gerstner/Faßbender for Hamiltonian matrices. Furthermore, we discuss structure-preserving Jacobi-like methods based on the solution of non-Hermitian 2-by-2 subproblems. For these methods a local convergence proof is given. Numerical test results for the comparison of the proposed methods are presented.
Subject(s): Jacobi-like method
Hermitian pencil
eigenvalues
Issue Date: 11-Jun-2002
Date Available: 17-Dec-2021
Language Code: en
DDC Class: 510 Mathematik
MSC 2000: 65F15 Eigenvalues, eigenvectors
Series: Preprint-Reihe des Instituts für Mathematik, Technische Universität Berlin
Series Number: 2002, 738
ISSN: 2197-8085
TU Affiliation(s): Fak. 2 Mathematik und Naturwissenschaften » Inst. Mathematik
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
ppr738-02.pdf
Format: Adobe PDF | Size: 253.23 kB
DownloadShow Preview
Thumbnail
ppr738-02.ps
Format: Postscript | Size: 605.42 kB
Download

Item Export Bar

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.