Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-14246
For citation please use:
Main Title: A Bernstein property of affine maximal hypersurfaces
Author(s): Li, An-Min
Fang, Jia
Type: Research Paper
URI: https://depositonce.tu-berlin.de/handle/11303/15473
http://dx.doi.org/10.14279/depositonce-14246
License: http://rightsstatements.org/vocab/InC/1.0/
Abstract: Let $x:M^n\to A^{n+1}$ be the graph of some strictly convex function $x_{n+1} = f(x_1,\cdots,x_n)$ defined in a convex domain $|Omega\subset A^n$. We introduce a Riemannian metric $G^\# = \sum\frac{\partial^2 f}{\partial x_i \partial x_j}dx_idx_j$ on $M$. In this paper we investigate the affine maximal hypersurface which is complete with respect to the metric $G^\#$, and prove a Bernstein property for the affine maximal hypersurfaces.
Subject(s): Bernstein property
affine maximal hypersurface
Issue Date: 30-Jan-2002
Date Available: 17-Dec-2021
Language Code: en
DDC Class: 510 Mathematik
MSC 2000: 53A15 Affine differential geometry
Series: Preprint-Reihe des Instituts für Mathematik, Technische Universität Berlin
Series Number: 2002, 727
ISSN: 2197-8085
TU Affiliation(s): Fak. 2 Mathematik und Naturwissenschaften » Inst. Mathematik
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
Preprint_727-2002.pdf
Format: Adobe PDF | Size: 7.5 MB
DownloadShow Preview
Thumbnail

Item Export Bar

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.