Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-14248
For citation please use:
Main Title: Quantization of Curvature for Compact Surfaces in S^n
Author(s): Simon, Udo
Li, Haizhong
Type: Research Paper
URI: https://depositonce.tu-berlin.de/handle/11303/15475
http://dx.doi.org/10.14279/depositonce-14248
License: http://rightsstatements.org/vocab/InC/1.0/
Abstract: For minimal surfaces in spheres, there is a well known conjecture about the quantization of intrinsic curvature which has been solved only in special cases so far. We recall an intrinsic and an extrinsic version for the known results and extend them to compact non-minimal surfaces in spheres. In particular we discuss special classes like Willmore surfaces and surfaces with parallel mean curvature vector.
Subject(s): minimal surfaces in spheres
quantization of curvature
mean curvature vector
Veronese surface
Willmore surface
Issue Date: 21-Aug-2002
Date Available: 17-Dec-2021
Language Code: en
DDC Class: 510 Mathematik
MSC 2000: 53C42 Immersions
53A10 Minimal surfaces, surfaces with prescribed mean curvature
Series: Preprint-Reihe des Instituts für Mathematik, Technische Universität Berlin
Series Number: 2002, 732
ISSN: 2197-8085
TU Affiliation(s): Fak. 2 Mathematik und Naturwissenschaften » Inst. Mathematik
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
Preprint_732-2002.pdf
Format: Adobe PDF | Size: 6.3 MB
DownloadShow Preview
Thumbnail

Item Export Bar

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.