Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-14248
For citation please use:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSimon, Udo
dc.contributor.authorLi, Haizhong
dc.date.accessioned2021-12-17T10:05:21Z-
dc.date.available2021-12-17T10:05:21Z-
dc.date.issued2002-08-21
dc.identifier.issn2197-8085
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/15475-
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-14248-
dc.description.abstractFor minimal surfaces in spheres, there is a well known conjecture about the quantization of intrinsic curvature which has been solved only in special cases so far. We recall an intrinsic and an extrinsic version for the known results and extend them to compact non-minimal surfaces in spheres. In particular we discuss special classes like Willmore surfaces and surfaces with parallel mean curvature vector.en
dc.language.isoenen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.ddc510 Mathematiken
dc.subject.otherminimal surfaces in spheresen
dc.subject.otherquantization of curvatureen
dc.subject.othermean curvature vectoren
dc.subject.otherVeronese surfaceen
dc.subject.otherWillmore surfaceen
dc.titleQuantization of Curvature for Compact Surfaces in S^nen
dc.typeResearch Paperen
tub.accessrights.dnbfreeen
tub.publisher.universityorinstitutionTechnische Universität Berlinen
tub.series.issuenumber2002, 732en
tub.series.namePreprint-Reihe des Instituts für Mathematik, Technische Universität Berlinen
dc.type.versionsubmittedVersionen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften » Inst. Mathematikde
tub.subject.msc200053C42 Immersionsen
tub.subject.msc200053A10 Minimal surfaces, surfaces with prescribed mean curvatureen
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
Preprint_732-2002.pdf
Format: Adobe PDF | Size: 6.3 MB
DownloadShow Preview
Thumbnail

Item Export Bar

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.