Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-14255
For citation please use:
Main Title: Skew-Hamiltonian and Hamiltonian Eigenvalue Problems: Theory, Algorithms and Applications
Author(s): Benner, Peter
Kressner, Daniel
Mehrmann, Volker
Type: Research Paper
URI: https://depositonce.tu-berlin.de/handle/11303/15482
http://dx.doi.org/10.14279/depositonce-14255
License: http://rightsstatements.org/vocab/InC/1.0/
Abstract: Skew-Hamiltonian and Hamiltonian eigenvalue problems arise from a number of applications, particularly in systems and control theory. The preservation of the underlying matrix structures often plays an important role in these applications and may lead to more accurate and more efficient computational methods. We will discuss the relation of structured and unstructured condition numbers for these problems as well as algorithms exploiting the given matrix structures. Applications of Hamiltonian and skew-Hamiltonian eigenproblems are briefly described.
Subject(s): Hamiltonian matrix
skew-Hamiltonian matrix
structured condition numbers
structure-preserving algorithms
Issue Date: 19-Nov-2003
Date Available: 17-Dec-2021
Language Code: en
DDC Class: 510 Mathematik
MSC 2000: 65F15 Eigenvalues, eigenvectors
Series: Preprint-Reihe des Instituts für Mathematik, Technische Universität Berlin
Series Number: 2003, 44
ISSN: 2197-8085
TU Affiliation(s): Fak. 2 Mathematik und Naturwissenschaften » Inst. Mathematik
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
Preprint-44-2003.pdf
Format: Adobe PDF | Size: 400.27 kB
DownloadShow Preview
Thumbnail

Item Export Bar

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.