Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-14259
For citation please use:
Main Title: Minimizing the Stabbing Number of Matchings, Trees, and Triangulations
Author(s): Fekete, Sándor P.
Lübbecke, Marco E.
Meijer, Henk
Type: Research Paper
URI: https://depositonce.tu-berlin.de/handle/11303/15486
http://dx.doi.org/10.14279/depositonce-14259
License: http://rightsstatements.org/vocab/InC/1.0/
Abstract: The (axis-parallel) stabbing number of a given set of line segments is the maximum number of segments that can be intersected by any one (axis-parallel) line. We investigate problems of finding perfect matchings, spanning trees, or triangulations of minimum stabbing number for a given set of points. The complexity of these problems has been a long-standing open problem; in fact, it is one of the original 30 outstanding open problems in computational geometry on the list by Demaine, Mitchell, and O'Rourke.
Subject(s): stabbing number
crossing number
matching
spanning tree
triangulation
complexity
linear programming relaxation
iterated rounding
Issue Date: 2003
Date Available: 17-Dec-2021
Language Code: en
DDC Class: 510 Mathematik
MSC 2000: 90C27 Combinatorial optimization
68Q25 Analysis of algorithms and problem complexity
68Q17 Computational difficulty of problems
90C05 Linear programming
Series: Preprint-Reihe des Instituts für Mathematik, Technische Universität Berlin
Series Number: 2003, 37
ISSN: 2197-8085
TU Affiliation(s): Fak. 2 Mathematik und Naturwissenschaften » Inst. Mathematik
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
Report-037-2003.pdf
Format: Adobe PDF | Size: 388.21 kB
DownloadShow Preview
Thumbnail
Report-037-2003.ps.gz
Format: Unknown | Size: 186.34 kB
Download

Item Export Bar

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.