Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-14261
For citation please use:
Main Title: Second order Lagrange multiplier approximation for constrained shape optimization problems
Author(s): Eppler, Karsten
Harbrecht, Helmut
Type: Research Paper
URI: https://depositonce.tu-berlin.de/handle/11303/15488
http://dx.doi.org/10.14279/depositonce-14261
License: http://rightsstatements.org/vocab/InC/1.0/
Abstract: The present paper is dedicated to the solution of constrained shape optimization problems by second order algorithms with respect to both, the primal and dual variables. This goal is realized by combining a Newton scheme for the primal variables with M\aa{}rtensson's concept of Lagrange multiplier functions for augmented Lagrangians.
Subject(s): shape optimization
boundary element method
multiscale methods
augmented Lagrangian approach
Newton method
Martensson's approach
Issue Date: 30-Sep-2003
Date Available: 17-Dec-2021
Language Code: en
DDC Class: 510 Mathematik
MSC 2000: 49Q10 Optimization of shapes other than minimal surfaces
65N38 Boundary element methods
90C90 Applications of mathematical programming
Series: Preprint-Reihe des Instituts für Mathematik, Technische Universität Berlin
Series Number: 2003, 35
ISSN: 2197-8085
TU Affiliation(s): Fak. 2 Mathematik und Naturwissenschaften » Inst. Mathematik
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
ppr2003_35.pdf
Format: Adobe PDF | Size: 173 kB
DownloadShow Preview
Thumbnail
ppr2003_35.ps
Format: Postscript | Size: 401.75 kB
Download

Item Export Bar

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.