Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-14274
For citation please use:
Main Title: Optimization of a thermal coupled flow problem - part I: Algorithms and numerical experiments
Author(s): Bärwolff, Günter
Hinze, Michael
Type: Research Paper
URI: https://depositonce.tu-berlin.de/handle/11303/15501
http://dx.doi.org/10.14279/depositonce-14274
License: http://rightsstatements.org/vocab/InC/1.0/
Abstract: In the present paper we investigate optimal control of semiconductor melts in zone-melting and Czochralski growth configurations. The flow is governed by the Boussinesq approximation of the Navier-Stokes system. The control goal consists in tracking of a prescribed flow field. As control action boundary heating in terms of Dirichlet and Neumann-type boundary conditions is considered. Optimal control strategies are characterized in terms of the first-order optimality conditions. On the numerical level these optimality conditions are solved by a damped Picard iteration. We present numerical experiments in two and three spatial dimensions for the crystal (Bi0.25Sb0.75)2Te2, which is formed by a composition of bismuth point fifty antimony one point fifty tellurium two, as well as for Si (Silicium).
Subject(s): timedepent Boussinesq equation
boundary control
numerical algorithm
numerical experiments
Issue Date: 4-Jul-2003
Date Available: 17-Dec-2021
Language Code: en
DDC Class: 510 Mathematik
MSC 2000: 65M60 Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods
65K10 Optimization and variational techniques
Series: Preprint-Reihe des Instituts für Mathematik, Technische Universität Berlin
Series Number: 2003, 15
ISSN: 2197-8085
TU Affiliation(s): Fak. 2 Mathematik und Naturwissenschaften » Inst. Mathematik
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
crystal_opt_gbmh05.pdf
Format: Adobe PDF | Size: 430.61 kB
DownloadShow Preview
Thumbnail
crystal_opt_gbmh05.ps
Format: Postscript | Size: 1.09 MB
Download

Item Export Bar

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.