Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-14274
For citation please use:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBärwolff, Günter
dc.contributor.authorHinze, Michael
dc.date.accessioned2021-12-17T10:05:38Z-
dc.date.available2021-12-17T10:05:38Z-
dc.date.issued2003-07-04
dc.identifier.issn2197-8085
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/15501-
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-14274-
dc.description.abstractIn the present paper we investigate optimal control of semiconductor melts in zone-melting and Czochralski growth configurations. The flow is governed by the Boussinesq approximation of the Navier-Stokes system. The control goal consists in tracking of a prescribed flow field. As control action boundary heating in terms of Dirichlet and Neumann-type boundary conditions is considered. Optimal control strategies are characterized in terms of the first-order optimality conditions. On the numerical level these optimality conditions are solved by a damped Picard iteration. We present numerical experiments in two and three spatial dimensions for the crystal (Bi0.25Sb0.75)2Te2, which is formed by a composition of bismuth point fifty antimony one point fifty tellurium two, as well as for Si (Silicium).en
dc.language.isoenen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.ddc510 Mathematiken
dc.subject.othertimedepent Boussinesq equationen
dc.subject.otherboundary controlen
dc.subject.othernumerical algorithmen
dc.subject.othernumerical experimentsen
dc.titleOptimization of a thermal coupled flow problem - part I: Algorithms and numerical experimentsen
dc.typeResearch Paperen
tub.accessrights.dnbfreeen
tub.publisher.universityorinstitutionTechnische Universität Berlinen
tub.series.issuenumber2003, 15en
tub.series.namePreprint-Reihe des Instituts für Mathematik, Technische Universität Berlinen
dc.type.versionsubmittedVersionen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften » Inst. Mathematikde
tub.subject.msc200065M60 Finite elements, Rayleigh-Ritz and Galerkin methods, finite methodsen
tub.subject.msc200065K10 Optimization and variational techniquesen
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
crystal_opt_gbmh05.pdf
Format: Adobe PDF | Size: 430.61 kB
DownloadShow Preview
Thumbnail
crystal_opt_gbmh05.ps
Format: Postscript | Size: 1.09 MB
Download

Item Export Bar

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.